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1. Introduction

The response of a Brownian particle to an external force is one of the paradigms of
statistical mechanics. Brownian motion is usually described as a Wiener process and
a full mathematical analysis is possible based on the solution of the corresponding
Fokker–Planck equation. However, a genuine Gaussian white noise does not exist
in real systems, and the importance of other types of noises has long been clear.

∗Corresponding author.

L397



August 29, 2005 16:15 WSPC/167-FNL 00283

L398 I. Bena et al.

Such noises have been studied in great detail in zero-dimensional systems, and their
specific properties are known to have a profound influence on the behavior of these
systems [1, 2]. The effect of the color of the noise on noise-induced transitions
continues to be documented [3–5], and has been found to be quite dramatic since
it can alter the type of transition and lead to new re-entrance phenomena. Other
noise-induced effects have also been found to be sensitive to the correlation time
of the noise, e.g. stochastic resonance [6], synchronization [7], and transport in
Brownian ratchets [5].

The two most commonly discussed examples of colored noise are the Ornstein–
Uhlenbeck process and the dichotomous Markov process [8]. The latter has the
great advantage that analytic results can often be derived. Nevertheless an essential
technical difficulty restricts almost all the results obtained in the past to dynamics
with no fixed points, or exclusively with stable fixed points, see for example [2].
We have recently made progress toward overcoming the technical difficulty that
appears in the presence of unstable fixed points by identifying the source of spurious
divergences that arise in the usual analytic approaches to the problem [9, 10], and
are now in the position to consider these cases as well.

The purpose of this paper is to apply the general analytic procedure we de-
veloped in Ref. [10] to two different stochastic phenomena driven by dichotomous
Markov noise, namely Stokes’ drift [11] and hypersensitive transport [12, 13]. Sec-
tion 2 deals with Stokes’ drift as a rocking ratchet problem and Sec. 3 with hy-
persensitive transport. A short summary is presented in Sec. 4. All the analytical
results are supported by numerical simulations of the corresponding dynamics of an
ensemble of 20000 particles, with random initial positions, sampled at 100 different
times in order to build up the histogram of the stationary probability density and,
from it, to compute the value of the asymptotic mean velocity. For some of the
lengthy calculations not presented in this Letter the reader may consult [14].

2. Stochastic Stokes’ Drift as a Rocking Ratchet

A longitudinal wave traveling through a viscous fluid imparts a net drift to the
suspended particles, an effect known as Stokes’ drift. The deterministic effect (that
does not account for the stochastic fluctuations or perturbations in the system)
has been extensively studied in various practical contexts ranging from the motion
of tracers in meteorology and oceanography [15] to doping impurities in crystal
growth [16]. The deterministic drift has a simple intuitive explanation, namely that
the suspended particle spends a longer time in the regions of the wave-train where
the force due to the wave acts in the direction of the propagation of the wave than
the time it spends in those regions where the force acts in the opposite direction.
Therefore, the particle is driven on average in the direction of wave propagation. As
a simple clarifying example [17], consider the dynamics of an overdamped particle
forced by a traveling square wave with velocity v and wavelength L,

ẋ = f(x − vt), (1)

where x(t) is the position of the overdamped particle at time t, and f is the periodic
forcing due to the longitudinal wave traveling at the speed v and of wavelength L.
Suppose that the particle is entrained with a force f = bv when in a crest part of
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the wave, and f = −bv when in a trough part. The time spent in a crest part,
L/[2(1 − b)v], is larger than in the trough part, L/[2(1 + b)v], resulting in a net
deterministic drift velocity v0 = b2 v of the particle.

Recent studies [11, 17, 18] show the importance of stochastic effects on Stokes’
drift. The thermal diffusion of the dragged particles, as well as the application
of an external colored noise, can markedly modify the direction and magnitude
of Stokes’ drift velocity. Furthermore, it has been shown that such a stochastic
Stokes’ drift is equivalent to another paradigm of Brownian motors, the rocking
ratchet [19]. In this scenario, the systematic motion acquired under the influence of
an alternating zero-average stochastic force revolves essentially around the asymme-
try of the nonlinear response in the presence of a steady asymmetric potential [21].
This mathematical equivalence between stochastic Stokes’ drift and Brownian mo-
tors hints at various potential applications of Stokes’ drift, for instance, transport
by capillary waves, storage of light in quantum wells, single-electron transport in
one-dimensional channels, optical tweezing of colloidal particles, and diffusion of
dislocations in solids, as noted in [20] and references therein.

In this paper we show, with an analytically solvable model, that the character-
istics of the one-dimensional stochastic Stokes’ drift are quite complex, and that
various interesting phenomena are induced, including enhancement of the deter-
ministic drift and current reversal, when the particles are subjected to an additive
colored noise, specifically, a dichotomous noise. The starting point is the following
stochastic equation with an additive symmetric dichotomous perturbation:

ẋ = f(x − vt) + Aξ(t). (2)

The dichotomous perturbation has an amplitude A and the stochastic variable ξ(t)
takes on the values ±1 with a transition rate k. It is appropriate to assume, on
physical grounds, that the particle cannot move faster than the wave and thus
f(y) < v for all y. The quantity of interest is the asymptotic drift velocity, 〈ẋ〉 =
limt→∞〈x(t)〉/t, where the brackets indicate an average over the realizations of the
dichotomous noise. Introducing a new variable y(t) = x(t) − vt, one can rewrite
Eq. (2) as

ẏ = F (y) + Aξ(t), (3)

with a time-independent periodic force, F (y + L) = F (y) = f(y) − v < 0. Equa-
tion (3) is a variant of the general stochastic differential equations solved in [9,10],
with a dichotomous force F (y) ± A.

The behavior of the system, and the corresponding solution of the associated
master equation for the probability density, depend on whether or not there are
unstable fixed points in the “±” dynamics. We present below the results for the
two simplest cases, namely, one with no fixed points (in Sec. 2.1), and the other
with two fixed points in the “+” dynamics and no fixed points in the “−” dynamics
(in Sec. 2.2).

2.1. Systems with no fixed points

When A > max |F (y)| or 0 < A < min |F (y)|, there are no fixed points. Then
one obtains the following expressions (see Eqs. (7) and (8) in Ref. [10]) for the



August 29, 2005 16:15 WSPC/167-FNL 00283

L400 I. Bena et al.

asymptotic probability density,

P (y) =
〈ẏ〉
L

{

[

F 2(y) − A2
]

[

exp

(

∫ L

0

dz
2kF (z)

F 2(z) − A2

)

− 1

]}−1

×
∫ y+L

y

dz [F ′(z) + 2k] exp

(

−
∫ y

z

dw
2kF (w)

F 2(w) − A2

)

,

(4)

and for the asymptotic mean velocity,

〈ẋ〉 = v + 〈ẏ〉

= v + L

[

exp

(

∫ L

0

dz
2kF (z)

F 2(z) − A2

)

− 1

]

×
{

∫ L

0

dy

∫ y+L

y

dz
F ′(z) + 2k

F 2(y) − A2
exp

(

−
∫ y

z

dw
2kF (w)

F 2(w) − A2

)

}−1

.

(5)

Here F ′(y) denotes the derivative with respect to y. The detailed analysis of
these results, including the possibility of current reversal, was already carried on in
Ref. [11].

2.2. Systems with asymptotic fixed points

If the amplitude of the noise lies in the intermediate regime min |F (y)| < A <
max |F (y)|, then the “+” dynamics has at least one pair of fixed points in [0, L).
We consider here the simplest case in which there is only one pair of fixed points,
namely, a stable fixed point y1 with F ′(y1) < 0, and an unstable fixed point y2 > y1

with F ′(y2) > 0. However, systems with several pairs of fixed points can be treated
in the same way. According to the general discussion in Section III.B of Ref. [10],
the probability density in the interval [y1, y1 + L) is given by

P (y) =
〈ẏ〉
L

1

|F 2(y) − A2|

∫ y

y2

dz sgn[F 2(z) − A2][F ′(z) + 2k]

× exp

(

−
∫ y

z

dw
2kF (w)

F 2(w) − A2

)

.

(6)

Equation (6) is continuous at the unstable fixed point y2, with

lim
y ↗y2

P (y) = lim
y↘y2

P (y) = −〈ẏ〉
L

2k + F ′(y2)

2A [k + F ′(y2)]
. (7)

Noting that F ′(y2) > 0 and P (y2) ≥ 0, 〈ẏ〉 is necessarily zero or negative. This
immediately suggests that the direction of the net drift 〈ẋ〉 = 〈ẏ〉+v can be reversed
by varying the amplitude A or the transition rate k of the dichotomous perturbation.
The details of this current reversal phenomenon are discussed in a later section. At
the stable fixed point y1 the probability density is continuous only for k/|F ′(y1)| > 1
and its value is

lim
y↘y1

P (y) = lim
y↗y1

P (y) = −〈ẏ〉
L

2k − |F ′(y1)|
2A [k − |F ′(y1)|]

. (8)
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For k/|F ′(y1)| ≤ 1, P (y) is divergent at y1 but integrable.
The corresponding mean velocity is given by

〈ẋ〉 =v + L

{

∫ y1+L

y1

dy

∫ y

y2

dz
sgn

[

F 2(z) − A2
]

[F ′(z) + 2k]

|F 2(y) − A2|

× exp

(

−
∫ y

z

dw
2kF (w)

F 2(w) − A2

)}−1

.

(9)

Note that if several waves are present, their contributions are not additive due to
the highly nonlinear dependence of 〈ẋ〉 on F . This seems to be a general feature of
the stochastic Stokes’ drift [11, 17, 18], contrary to the deterministic drift.

2.3. The square wave

The above results are valid for an arbitrary form of the wave F (y), provided that the
obvious necessary differentiability and integrability conditions are fulfilled. How-
ever, due to the multiple integrals in Eqs. (6) and (9), further analytic investigation
without a simple form of F (y) is difficult. Following our previous work [10, 11], we
use a piecewise linear wave

F (y) =



























−(1− b)v for y ∈ [0, L/2− 2l) ,

−(1− b)v − bv

l
(y − L/2 + 2l) for y ∈ [L/2 − 2l, L/2) ,

−(1 + b)v for y ∈ [L/2, L− 2l) ,

−(1 + b)v +
bv

l
(y − L + 2l) for y ∈ [L − 2l, L) ,

(10)

with 0 < b < 1, and F (y + L) = F (y). Although the analytic treatment is possible,
the general solutions are still rather complicated, and the results are not presented
in this Letter. See [14] for more details. We focus here on the results in the limit
of a square wave l → 0, for which

F (y) =







−F− ≡ −(1− b)v for y ∈ [0, L/2) ,

−F+ ≡ −(1 + b)v for y ∈ [L/2, L) .
(11)

It should be noted that this limit is singular and must be handled with some care.
From Eq. (4) one obtains the probability density for A > F+ or 0 < A < F−,

P (y) =































〈ẏ〉
L

[

2A2bv
(

1 − eφ2

)

e2φ1y/L

F+F−(F 2
− − A2) (eφ1+φ2 − 1)

− 1

F−

]

for y ∈ [0, L/2) ,

〈ẏ〉
L

[

2A2bv
(

1 − eφ1

)

eφ2(2y/L−1)

F+F−(A2 − F 2
+) (eφ1+φ2 − 1)

− 1

F+

]

for y ∈ [L/2, L) ,

(12)

where

φ1,2 =
LkF∓

F 2
∓ − A2

. (13)
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Fig. 1. The asymptotic Stokes’ drift velocity (normalized by its deterministic value v0 = b2v)
as a function of normalized transition rate β = 2kvL/A2 for three different cases. The symbols
are the results of numerical simulations. Circles: A = 0.4 < F− (no fixed point); squares:

F− < A = 1.0 < F+ (two fixed points); triangles: A = 1.6 > F+ (no fixed point). The solid lines

indicate the results of theory. The values of the other parameters are v = 1, b = 0.5, and L = 1.
The direction of the drift velocity remains the same for A = 0.4 and A = 1.0, but is reversed for
A = 1.6.

Integrating Eq. (6), we find the probability for F− < A < F+,

P (y) =







































































〈ẏ〉
L

[

(1 − eφ1)(F− − A)

kF−

δ−(y − L/2)

+
Ae2φ1y/L

F−(A + F−)
− 1

F−

]

for y ∈ (0, L/2) ,

〈ẏ〉
L

[

(1 − e−φ2)(A − F+)

kF+
δ+(y − L/2)

+
Ae2φ2(y/L−1)

F+(A + F+)
− 1

F+

]

for y ∈ (L/2, L) ,

(14)

where δ±(x) are the half Dirac-δ functions [22].
Correspondingly, the drift velocity for A > F+ or 0 < A < F− is given by

〈ẋ〉 = v0

1 − eφ1+φ2 − 2A2v

LkF+F−

(1 − eφ1)(1 − eφ2)

1 − eφ1+φ2 − 2A2v0

LkF+F−

(1 − eφ1)(1 − eφ2)

, (15)
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and for F− < A < F+ by

〈ẋ〉 = v −
[

1

v − v0
− (1 − eφ1)(F− − A)2

2kLF 2
−

+
(1 − e−φ2)(F+ − A)2

2kLF 2
+

]−1

, (16)

where, recall, v0 = b2v is the deterministic value of Stokes’ drift velocity for the
square wave. We mention some limiting cases of interest:

(i) The limit A → 0 or k → ∞ leads to the deterministic Stokes’ velocity,
〈ẋ〉 = v0.

(ii) The drift velocity derived in Ref. [17] is recovered in the white noise limit
A → ∞, k → ∞, with a finite D = A2/2k.

(iii) The quenched-noise limit k → 0 describes the system in which half of the
particles, chosen at random, are subjected to a constant external forcing +A and
the other half to forcing −A. When there are no fixed points, the mean velocity in
this limit is

〈ẋ〉 = v0

(

v2

v2 − A2

)

. (17)

This expression clearly indicates the existence of the flux reversal suggested earlier,
since the drift velocity is negative for sufficiently large amplitude A of the forcing,
and positive for small A’s. When there are fixed points in the “+” dynamics,
Eq. (16) leads to a mean velocity

〈ẋ〉 =
F 2

+ + F 2
− − 2A2

4(v + A)
. (18)

In this limit, the current is reversed at A =
√

(F 2
+ + F 2

−)/2 =
√

1 + b2 v.

Figure 1 shows the drift velocity, Eqs. (15) and (16), as a function of the nor-
malized transition rate, β = 2kvL/A2. The plots of the analytic results are in good
agreement with the Monte Carlo simulation of the original stochastic differential
equation (2). When the transition rate is high (β � 1), the effect of the dichoto-
mous noise is averaged out and the drift velocity approaches the deterministic limit
v0 regardless of the noise amplitude. Interesting phenomena, namely, negative drift
velocity and current reversal, take place only when the transition rate is sufficiently
small, i.e., β . 1.

Figure 2 shows the drift velocity, Eqs. (15) and (16), in the three different regimes
corresponding to low (A < F−) and high (A > F+) noise amplitudes with no fixed
points, and intermediate (F− < A < F+) noise amplitudes with a pair of fixed
points. The agreement between analytic results and simulations is again very good.
At low noise amplitudes the drift velocity is positive and increases with increasing
noise amplitude, i.e., noise enhances Stokes’ drift. The noise-induced enhancement
reaches its maximum at A = F− and decreases above this noise amplitude. In
general, noise-induced phenomena disappear when the noise becomes too large.
However, the decrease at the intermediate noise is not the destruction of Stokes’
drift due to large fluctuations of the particle velocity. The sudden change with
discontinuity in the first derivative of the drift velocity suggests the appearance of
a bifurcation in the dynamics. When F− < A < F+, the system has a stable fixed
point in the “+” dynamics and some particles become stuck at the fixed point until
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Fig. 2. Asymptotic Stokes’ drift velocity (normalized by its deterministic value v0 = b2v) as a
function of the noise amplitude A. The solid line represents theory and the circles show the results
of numerical simulations. The values of the parameters are v = 1, b = 0.5, k = 1, and L = 1.

the noise switches. The actual drift takes place only when the system is in the “–”
dynamics, corresponding to a smaller or even negative value of ẋ. The negative drift
reaches its maximum at A = F+ where the fixed points disappear. For A > F+, the
“±” dynamics correspond to drift velocities in opposite directions, and therefore the
net drift is reduced. Finally, as expected, Stokes’ drift is asymptotically destroyed
as the noise amplitude increases to infinity.

Figure 3 illustrates the probability densities Eqs. (12) and (14) for three different
amplitudes of the dichotomous noise. For comparison, the numerical solution of
the stochastic differential equation (2) is also shown. The agreement between the
present analytic theory and the computer simulation is nearly perfect. Due to
the discontinuity of the square wave F (y), Eq. (10), the probability densities are
discontinuous at y = 0 and y = L/2 for all cases. Moreover, for A = 1.0 the system
has fixed points and the probability density becomes δ-singular at the stable fixed
point. The probability densities are also asymmetric in all cases. For A = 0.4, the
density is higher at y ∈ (0, L/2) than at y ∈ (L/2, L). On the other hand, the
situation is the other way around for A = 1.6. This difference causes the current
reversal.

3. Hypersensitive Transport

Generally and somewhat loosely speaking, the term “hypersensitive transport”
refers to a highly nonlinear directed response of a nonequilibrium, noisy system to a
small systematic external forcing. This phenomenon was discovered rather recently,
and received a great deal of theoretical [9, 12] and experimental [13] attention.

One of the simplest models exhibiting this novel phenomenon describes an over-
damped particle whose dynamics switches dichotomically between a symmetric po-
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Fig. 3. The profile of the probability density P (y) for three values of the amplitude A of the
dichotomous noise. The first (A < F−) and the last panel (A > F+) correspond to the regime
with no fixed points, while the second panel (F− < A < F+) corresponds to the presence of two
fixed points. Solid lines indicate the analytic results and shaded histograms show the results of
numerical simulation. The values of the parameters are v = 1, b = 0.5, k = 1, and L = 1. In the
simulation, the dynamics of 20000 particles is sampled at 100 different times.
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Fig. 4. The net potentials ∓V (x) − Fx. x1 and x2 represent unstable and stable fixed points,
respectively. The substrate potential is defined as V (x) = −

∫
x v(x′)dx′. When the switching rate

between these two potentials is sufficiently small, particles accumulate at a stable fixed point x2,
bypassing the unstable fixed point x1. When the potential switches, the particles are repelled by
the unstable fixed point x1 toward a new stable fixed point. Even when the external force F is
very small, the particles are able to avoid backward drift.

tential and its negative. When the symmetry of the system is slightly broken by a
small directed external force, the system responds highly nonlinearly by exhibiting
a “giant” systematic particle drift. Let us thus consider the following stochastic
dynamics with a multiplicative noise [9]:

ẋ = F + ξ(t)v(x). (19)

The dichotomous noise ξ(t) = ±1 has, as before, transition rate k. F > 0 represents
a constant external force, and v(x) is a given symmetric “substrate” force profile
that is assumed to be periodic, v(x + L) = v(x). Some preliminary results on this
model were reported in Ref. [9]. Here we present more (and more detailed) results
than in our earlier work.

3.1. No fixed points

When the external force is sufficiently large [F 2−v2(x) 6= 0 for any x ∈ [0, L)], there
is no fixed point in either dynamics, and one obtains the asymptotic probability
density

P (x) =
〈ẋ〉
LF























1 +

v(x)

∫ x+L

x

dz v′(z) exp

[

−
∫ x

z

dw
2kF

F 2 − v2(w)

]

[F 2 − v2(x)]

{

exp

[

∫ L

0

dz
2kF

F 2 − v2(z)

]

− 1

}























, (20)
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and, through the normalization of P (x), the mean asymptotic velocity

〈ẋ〉
F

=























1 +

∫ L

0

dx
v(x)

F 2 − v2(x)

∫ x+L

x

dz v′(z) exp

[

−
∫ x

z

dw
2kF

F 2 − v2(w)

]

L

{

exp

[

∫ L

0

dz
2kF

F 2 − v2(z)

]

− 1

}























−1

.

(21)

3.2. Asymptotic dynamics with fixed points

For simplicity and without the loss of any relevant point of the method, we take
v(x) to be a continuously decreasing function in [0, L/2] and symmetric about L/2,
v(x + L/2) = −v(x). This implies that P (x + L/2) = P (x), so we can limit our
analysis to half a period. When the external force is weak, the particle moves
alternately in the two “net potentials” represented schematically in Fig. 4. In this
simple case the equation F 2 − v2(x) = 0 has only two solutions in [0, L/2], namely:
x1, corresponding to an unstable fixed point in the “−” dynamics [F = v(x1), with
v′(x1) < 0], and x2, a stable fixed point in the “+” dynamics [F = −v(x2), with
v′(x2) < 0], with x2 > x1. These fixed points are the local extrema of the net
potentials.

According to the discussions in [9, 10], the physically acceptable solution in the
interval [x2 − L/2, x2] is given by

P (x) =
〈ẋ〉
LF

{

1 +
v(x)

|F 2 − v2(x)|

∫ x

x1

dz sgn
[

F 2 − v2(z)
]

v′(z)

× exp

[

−
∫ x

z

dw
2kF

F 2 − v2(w)

]}

,

(22)

which extends by periodicity to the whole x-axis. At the unstable fixed point x1,
the probability density is continuous and its value is given by

lim
x↘x1

P (x) = lim
x↗x1

P (x) =
〈ẋ〉

LF {1 − 1/[2(k/|v′(x1)| + 1)]} . (23)

Note that the stable fixed points x2−L/2 and x2 are located at the ends of the chosen
interval and there is no other stable fixed point within this interval. Therefore, the
probability density is continuous inside the interval. However, it can be singular at
the stable fixed points. When the transition rate is sufficiently large [k/|v′(x2)| > 1],
there is not enough time for the particles to reach and to accumulate at the stable
fixed points, thus P (x) is continuous at x2 and x2 − L/2, as follows:

lim
x↗x2

P (x) = lim
x↘(x2−L/2)

P (x) =
〈ẋ〉

LF {1 + 1/[2(k/|v′(x2)| − 1)]} . (24)

For low transition rates [k/|v′(x2)| ≤ 1], the majority of particles become stuck near
the stable fixed points for a long time, thus resulting in the divergence of P (x) at
x2 and x2 − L/2. These divergences cause a highly nonlinear conductivity of the
system, as will be discussed later.
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From the normalization of P (x), the average velocity is obtained as

〈ẋ〉
F

=

{

1 +
2

L

∫ x2

x2−L/2

dx
v(x)

|F 2 − v2(x)|

×
∫ x

x1

dz sgn
[

F 2 − v2(z)
]

v′(z) exp

[

−
∫ x

z

dw
2kF

F 2 − v2(w)

]}−1

.

(25)

Although exact, the above results are still too complicated to gain a clear phys-
ical picture of the behavior of the system. We therefore turn to a particular shape
of the velocity profile v(x) that simplifies the evaluation of the above functional
expressions.

3.3. Piecewise linear internal force

We consider a piecewise linear “substrate” force

v(x) =















v0 for x ∈ [0, L/2 − 2l) ,

v0 [L/(2l)− 1 − x/l] for x ∈ [L/2 − 2l, L/2) ,

−v(x − L/2) for x ∈ [L/2, L) ,

(26)

with l ≤ L/4 and the periodicity condition v(x + L) = v(x). It is convenient to
introduce the following dimensionless variables:

f = F/v0, α = lk/v0, Γ = 4l/L (0 < Γ < 1), (27)

and to work with the function

T (x)

=
1

v0

∫ x

0

dz sgn
[

F 2 − v2(z)
]

v′(z) exp

[
∫ z

0

dw
2kF

F 2 − v2(w)

]

=































0 for x ∈ [0, L/2 − 2l) ,
∣

∣

∣

∣

f + 1

f − 1

∣

∣

∣

∣

α

exp

[

−4αf(1− Γ)

(1 − f2)Γ

]

×
∫ χ

1

ds sgn(f2 − s2)

∣

∣

∣

∣

f − s

f + s

∣

∣

∣

∣

α

for x ∈ [L/2 − 2l, L/2) ,

(28)

where χ = L/(2l)− 1 − x/l.
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In the absence of fixed points (f > 1), one obtains the stationary probability
density

P (x) =



























































〈ẋ〉
LF

{

1 − T (L/2)

(f2 − 1)(∆ + 1)

× exp

[

− 8αf

(f2 − 1)Γ

x

L

]}

for x ∈ [0, L/2− 2l) ,

〈ẋ〉
LF

{

1 +

(

f + 1

f − 1

)α

× χ [T (x) − T (L/2)/(∆ + 1)]

∆(f − χ)1+α(f + χ)1−α

}

for x ∈ [L/2 − 2l, L/2) ,

(29)

where we have introduced the short-hand notation

∆ =

∣

∣

∣

∣

f + 1

f − 1

∣

∣

∣

∣

2α

exp

[

4αf(1 − Γ)

(f2 − 1)Γ

]

. (30)

The corresponding mean velocity is given by

〈ẋ〉
F

=

{

1 − ΓT (L/2)

4αf(∆ + 1)

[

1 − ∆−1

(

f + 1

f − 1

)2α
]

+
Γ

2∆

(

f + 1

f − 1

)α

×
∫ 1

−1

dt
t [T (L/2 − l(t + 1)) − T (L/2)/(∆ + 1)]

(f − t)1+α(f + t)1−α

}−1

.

(31)

When 0 < f < 1 the dynamics has two fixed points, an unstable one at x1 =
L/2 − l(1 + f) and a stable one at x2 = L/2 − l(1 − f). The situation is then
more complicated but still analytically tractable. The probability density is written
separately for three different regions:

P (x) =































































































〈ẋ〉
LF

{

1 − T (x1)

1 − f2
exp

[

8αf

(1 − f2)Γ

x

L

]

}

for x ∈ [0, L/2− 2l) ,

〈ẋ〉
LF

{

1 +

(

1 + f

1 − f

)α

× χ [T (x) − T (x1)]

∆ |f − χ|1+α |f + χ|1−α

}

for x ∈ [L/2 − 2 l, x2) ,

〈ẋ〉
LF

{

1 +

(

1 + f

1 − f

)α

×χ [T (x) + ∆T (x1) − T (L/2)]

∆ |f − χ|1+α |f + χ|1−α

}

for x ∈ [x2, L/2) .

(32)

This probability density is continuous at the unstable fixed point x1,

lim
x↘x1

P (x) = lim
x↗x1

P (x) =
〈ẋ〉

LF {1 − 1/[2(α + 1)]} . (33)
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Fig. 5. The mean asymptotic velocity as a function of the applied force f for different values of
the parameter α. The other parameters are v0 = 1, Γ = 0.4, and L = 1. The symbols represent
the results of numerical simulations. The solid lines are the result of theory and the dashed line

indicates the linear response.

At the stable fixed point x2, P (x) is continuous for α > 1, with

lim
x↘x2

P (x) = lim
x↗x2

P (x) =
〈ẋ〉

LF {1 + 1/[2(α − 1)]} , (34)

but divergent and integrable for α ≤ 1. The average velocity as usual follows from
the normalization of P (x),

〈ẋ〉
F

=

{

1 − ΓT (x1)

4αf

[

(

1 + f

1 − f

)2α

∆−1 − 1

]

+
Γ(1 + f)α

2∆(1 − f)α

×
{
∫ 1

−1

dt
t
[

T [L/2− l(t + 1)] − T (x1)
]

|t − f |1+α |t + f |1−α + [T (x1)(1 + ∆) − T (L/2)]

×
∫ −f

−1

dt
t

|t − f |1+α |t + f |1−α

}

}−1

.

(35)

The integrals in Eqs. (28), (31), and (35) cannot be evaluated in closed analytic
form except for a few specific values of α (e.g., α = 1/2, 1, 2) and will not be
presented here. See [14] for an illustration.

3.4. Response properties

Equations (31) and (35) are evaluated numerically and plotted in Fig. 5 as a function
of the external force f for different values of α. The results are in good agreement
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Fig. 6. The profile of the probability density P (x) for two values of the applied force f . The
first corresponds to the regime with fixed points, and the second to the regime with no fixed
points. Solid lines indicate the analytic results and shaded histograms show the results of numerical
simulations. The values of the other parameters are v0 = 1, α = 1, Γ = 0.4, and L = 1. In the
simulations, the dynamics of 20000 particles is sampled at 100 different times.

with computer simulations. The drift velocity shows highly nonlinear responses to
the external force depending on the transition rate of the dichotomous noise, as
illustrated in Fig. 5. There are four asymptotic regimes of interest:

(i) Linear Response Regime I: When the deterministic external force f is
much larger than the fluctuating force (f � 1), the effect of the fluctuating force
is negligible and a linear response, 〈ẋ〉/v0 = f , is expected for any transition rate.
Indeed, all curves in Fig. 5 approach the linear response curve as f increases.

(ii) Linear Response Regime II: When the transition rate is very high (α �
1), the fluctuating force is averaged out and only the deterministic external force
effectively drives the particles. Therefore, a linear response, 〈ẋ〉/v0 = f , is again
expected for α � 1. Figure 5 shows that the drift velocity for α = 1 is already very
close to this linear response limit.

(iii) Adiabatic Regime: Since we are interested in nonlinear response, we
focus on the cases with small α and small f . When the transition rate is sufficiently
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small (adiabatic limit), the system remains in one of the ±V (x) potentials for a
long time. The particles eventually reach a minimum of the net potential and
wait there until the potential flips. When the dichotomous noise switches its value,
the particles suddenly find themselves near the maximum of the net potential as
illustrated in Fig. 4. They move down to a new potential minimum and wait again
for the next potential flip. A typical time for them to escape from the region
close to the maximum is given by τ = −(`/v0) ln f . Therefore, this adiabatic
regime is realized when the average time between switches, k−1, is much longer
than τ , which leads to 1 > f � exp(−1/α). (Note that the adiabatic regime is
not possible unless there is a fixed point and thus f < 1.) Only α � 1 can satisfy
this condition. In this range of the external force, the mean velocity is simply
half the spatial period of the “substrate” potential divided by the mean switching
time, that is, 〈ẋ〉 = Lk/2 = 2v0α/Γ. The same result can be obtained directly
from Eq. (35) by taking the appropriate limit. This result is interesting in that
the mean velocity does not depend on the external force F , nor the magnitude
v0 of the fluctuating force, and is inversely proportional to the correlation time
of the noise. A higher transition rate reduces the waiting period at the potential
minimum and thus increases the mean velocity. However, increasing k reduces the
range of occurrence of this adiabatic regime. These results are in perfect agreement
with the computer simulations (Fig. 5). The transport in the adiabatic regime has
been investigated as hypersensitive response in Ref. [12] but without a full analytic
solution.

(iv) Hyper-Nonlinear Regime: For a small external force, f < exp(−1/α),
the particles manage to advance to the next potential minimum only when the
dichotomous noise realizes exponentially rare cases where it keeps the same value
for times much longer than the correlation time. Therefore, the mean velocity
rapidly falls to zero as f decreases. Indeed, from Eq. (35), taking the limit f → 0,
we find for the mean velocity

〈ẋ〉/v0 ≈ [2αΓ(ln f)2]−1. (36)

This result is striking in that the susceptibility (or the conductance) of the
system d〈ẋ〉/df diverges at f = 0, indicating that the mean velocity is extremely
sensitive to the external force. Another interesting feature is that the mean velocity
is inversely proportional to the transition rate k, in contrast to the adiabatic regime
where the velocity is directly proportional to the transition rate. Figure 5 shows
the mean velocity as a function of the applied force f for different values of α. Note
the linear response regime I for all values of α; the linear response regime II for
α = 1 (practically for all f , except the small-f region); the adiabatic regime for
α = 0.01 and (more restricted) for α = 0.1; and the hyper-nonlinear regime for
all α. The nonmonotonic dependence of the mean velocity on α (e.g., ∼ α in the
adiabatic regime, ∼ α−1 in the hyper-nonlinear regime, and α-independent in the
linear response regime) leads to the fact that the curves in Fig. 5 cross each other
in the f -regions where there is a switch between these various regimes.

In Fig. 6 we present two typical profiles of the probability density P (x) for the
two regimes with and without fixed points, with an abrupt change in shape between
these regimes.
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4. Conclusions

We have derived explicit results for the probability density and drift velocity in sys-
tems that model Stokes’ drift and hypersensitive response driven by dichotomous
noise. We include the situation in which the asymptotic dynamics crosses unstable
fixed points, a case where the standard approaches are not applicable in a straight-
forward way [9, 10]. We have presented analytic results for particular choices of
potentials and parameters that elucidate the behavior in a way not entirely possible
when only numerical results are available. These results reinforce our impression
that dichotomous Markov noise can be put on par with Gaussian white noise as far
as obtaining analytical results is concerned.
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