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ABSTRACT

About a decade ago Brownian motors were introduced as a possible mechanism for motor protein mobility.
Since then many theoretical and experimental papers have been published on the topic. While some experiments
support Brownian motor mechanisms, others are more consistent with traditional power stroke models. Taking
into account recent experimental data and molecular level simulations, we have developed a stochastic model
which incorporates both power stroke and Brownian motor mechanisms. Depending on parameter values, this
motor works as a power stroker, a Brownian motor or a hybrid of the two. Using this model we investigate the
motility of single-head myosins, two-head myosins and a group of myosins (muscle). The results are compared
with some experimental data.
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1. INTRODUCTION

Motor proteins such as myosin and kinesin produce directed motion against an externally applied load by
consuming the chemical energy stored in ATP. The mechanism used by molecular motor proteins to convert this
chemical energy directly into mechanical work has been a matter of debate for many years. After Huxley revealed
that muscle contractions were a result of myosin and actin filaments sliding relative to each other,1, 2 theories
were soon after developed into what is known as the lever-arm theory to explain the sliding motion.3–6 Recently
there have been a number of techniques developed capable of observing single protein-filament interactions. The
resulting experiments over the past decade have led to disparate ideas about the mechanism for force generation
in motor proteins. While some experiments provided data supporting Huxley’s original lever-arm model, other
experiments showed evidence of a Brownian motor mechanism.

Recent experiments clearly show that myosins attached to actin filaments spend most of the time in two
different orientations corresponding to pre- and post-powerstroke positions.7 X-ray crystallographic analysis of
myosin protein structures have yielded evidence of multiple stable conformations of the lever arm consistent with
experimental observations.8–11 When the length of the lever arm is modified, the step length of the motor protein
is also changed in a way consistent with the lever arm model.12–18 However, contradicting experimental data
were also reported by other groups.19–24 Evidence supporting a Brownian motor mechanism can be found by
examining the traveling distance of myosin for a single ATP consumption. In some experiments, myosin moves
further than the lever arm is physically capable of reaching in a single powerstroke.25 On the other hand, there
have also been criticisms that Brownian motor models are not capable of producing a sufficiently strong force.26

In this proceeding paper, we attempt to construct a single model that captures both the lever arm and Brownian
motor mechanism. One becomes more dominant than the other depending on the chemical environment. With
this model, we try to explain the conflicting experimental results.

The hydrolysis of ATP plays an essential role in creating the directed motion observed in motor proteins.
Simultaneous observations of ATPase and mechanical motion have been made on single myosin proteins27 that
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demonstrate the tight coupling between ATP hydrolysis and the displacement/force generation of myosin. Al-
though the actual hydrolysis cycle takes several steps,26, 28 it is often approximated by a three-step cycle:

A + M · ATP
k12

����������������

k21

A · M · ADP · Pi

k23
����������������

k32

A · M + ADP + Pi

k31
����������������

k13

A + M · ATP (1)

where A, M , Pi represent actin, myosin, and inorganic phosphate, respectively. The dot between two molecules
indicates that they are bound together. The ATP hydrolysis cycle is tightly correlated to the motor’s mechanical
movement. When ATP is bound to the motor domain of myosin, the motor remains detached from the actin
filament (unbound state). In the process of hydrolyzing the nucleotide, the myosin attaches to the filament.
However, this binding is not very strong (weakly bound state). As ADP is released, the motor protein enters
the rigor state, in which it is locked in its position on the filament until another ATP nucleotide is bound. At
this chemical stage, the binding between the myosin and actin filament is very strong (tightly bound state). The
new ATP releases the motor protein from the filament and a new cycle begins. This mechanochemical cycle is
well studied and most theories are based upon it.25–27, 29, 30 The question is how this cycle is translated into the
production of mechanical work.

Based on the lever arm mechanics, releasing the inorganic phosphate, Pi from the myosin induces the “power-
stroke” conformational change that swings the lever arm.26 Since this process is too slow in the absence of the
actin, we assume that the release happens when the myosin is bound to actin. With one end of the motor domain
attached to the filament, the conformational change pivots the motor about that point shifting the opposite end.
When the myosin is detached from actin, the lever arm swings back to the original angle, but does so about a
pivot point near the neck of the motor. Due to this asymmetric cycling of the swing in the motor domain, the
myosin moves in one direction. The ATP hydrolysis serves two roles in this model. One purpose is driving the
conformational change in the neck region of the myosin inducing the swinging motion of the lever arm. The
other purpose is to detach the myosin from the actin filament, thus changing the axis of rotation of the lever
arm.

The Brownian motor mechanism utilizes the hydrolysis cycle in a quite different way. A myosin with an ATP
nucleotide is free to diffuse since it is not bound to an actin filament. After hydrolyzing the ATP, the myosin
moves to the nearest active site on the actin filament. While the actin filament is periodic, the spatial symmetry
is broken. Therefore, myosin moves in one direction on average. Unlike the lever arm mechanics, the work is
not generated by the conformational change. Instead, the myosin is actually rectifying the randomly fluctuating
stochastic forces exerted by surrounding fluid molecules. The role of ATP is to switch on and off the asymmetric
potential. This on-off or flashing ratchet mechanism31–33 has drawn significant interest since it looks like a type
of Maxwell’s demon. While it is not possible to rectify fluctuations in thermal equilibrium due to the second law
of thermodynamics, this mechanism clearly demonstrates that under certain nonequilibrium conditions thermal
fluctuations can indeed be rectified.

2. THE MODEL

A key element in the lever arm mechanism is the coupling between the rotational and translational motions since
the symmetric powerstroke would not otherwise produce any translational motion. Therefore, it is necessary to
consider two degrees of freedom, the translational coordinate x and rotational coordinate θ defined in Fig. 1.

2.1. Two-state model
To begin with, we consider a simple two-state model. Under typical physiological conditions found in muscle,26

the reaction rates k12, k23, and k31 are much larger than the rates k21, k32, and k13. Furthermore, the first
process is much slower than others (k12 � k23, k31). In this case, we can ignore the reverse reactions. As a
further reduction, we do not have to distinguish the weakly and strongly bound states and can assume that
the reaction immediately proceeds to the third state. This two-state model is useful to learn the underlying
mechanism.

Like the popular on-off ratchet, the myosin alternately experiences free diffusion and a periodic potential
in the translational degree of freedom. However, the rotational degree of freedom also experiences different
potentials according to the conformational changes in the protein.

94     Proc. of SPIE Vol. 5845



θ

x

1

0.5

0

-0.5

1.5
θ

xBB

A'

1

0

0.5

-0.5

1.5
θ

B''BB'BBBB'

A C

x

Figure 1. (Top) Model of myosin protein movement with two degrees of freedom. The position of the center of mass of
the motor domain along the actin filament is denoted by x(t). The angle that the motor domain makes with respect to
a normal along the actin filament is represented by θ(t). (Bottom, right) Beginning in the rigor state at A the motor is
rigidly held to the actin filament. (Bottom, left) Upon release from the filament, the motor drifts to a new equilibrium
point at B, while diffusing freely along the x-axis. After returning to original potential (now at B′), the motor falls into
one of two potential wells depending on which side of the potential barrier it lies — represented by the thick, dark lines
— either returning to A or moving one potential period forward to C.
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When the motor is free from the constraints of the actin filament (bound to ATP), it is free to diffuse in x.
On the other hand, θ fluctuates around an equilibrium angle θ1. For simplicity, we assume a simple harmonic
potential for θ as a first approximation:

V1(x, θ) =
K1

2
(θ − θ1)

2 (2)

where K1 is a spring constant. In this state, there is no coupling between translational and rotational motion.

As the protein hydrolyzes ATP and binds to actin, it perceives the periodic nature of the filament giving
rise to a periodic potential in x. Again for simplicity we assume a cosine potential. However if the motor pivots
about its point of attachment, the coordinates x and θ are not entirely independent of one another, as can be
ascertained from Fig. 1. When the motor is attached to the actin, a change in the angle pivots the motor about
that point, causing a subsequent shift in the position of the center of the motor. The resulting bound state can
be summed up as follows:

V3(x, θ) =
K3

2
(θ − θ3)

2 + U3 cos [2π(x − rθ)] (3)

where U3 is the depth of the periodic potential at the rigor state. Corresponding to the conformational change in
the myosin neck, the equilibrium angle θ3 is substantially shifted from θ1 in Eqn. (2). The value r corresponds
to the length of the pivot arm to the center of mass. Although θ is not necessarily small, we use the linear
approximation, rsin(θ) ≈ rθ. This approximation does not change the qualitative features of the present model.
We denote the effective transition rates between V1 and V3 as k̄13 and k̄31.

Imagine that all myosins are initially in the rigor state A in the potential V3 (See the bottom right panel in
Fig. 1). When an ATP binds to the myosin, the potential switches to V1 (bottom left panel) and the system
begins to drift towards the new equilibrium at B. At the same time, the motor thermally diffuses. When the
potential switches back to V3, a portion of the diffused myosin drift to the next equilibrium position, C. The rest
return to their original equilibrium position. By alternating potentials, the myosins on average move to the right
much in the same way as on-off ratchets. However, it should be noted that unlike on-off ratchets both V1 and V3

are spatially symmetric for any fixed angle. Nevertheless, due to the coupling between the degrees of freedom,
the motor can move by rectifying the thermal fluctuation. Moreover, if θ1 and θ3 are sufficiently different or the
length of lever arm r is sufficiently large, the motors can reach the next basin without diffusion. This transport
is driven by the powerstroke of the myosin. The geometric parameters |θ1 − θ3| and r, and also the time scales,
the transition rates and diffusion constant determine whether the motor is a Brownian motor or a power stroker.

2.2. Three states

In the more general case where some of the reverse reactions are not negligible, we must take into account all
three states with the potentials:

Vi =
Ki

2
(θ − θi)

2 + Ui cos [2π(x − rθ)] i ∈ (1, 2, 3). (4)

where U1 = 0, representing the myosin detached from the filament. The transition between the unbound and
weakly bound states is slow since the myosin search for the active site on the actin filament. Furthermore this
process is reversible since the binding is weak. Therefore, we now assume k21 �= 0, while the other reverse
processes are still assumed to be small and neglected. The conformational change |θ1 − θ2| should be so small
that no power stroke can take place during the transition from the unbound to the weakly bound state. However,
the Brownian motor mechanism is still possible as long as the diffusion is sufficiently large. During the transition
from the weakly to strongly bound state, a large conformational change |θ2 − θ3| is expected so that the power
stroke can take place.

2.3. Equations of motion

In addition to the force from the time-varying potential, the motor proteins are subject to frictional and random
forces due to collision with other molecules in the cytosol. Assuming that the motion is overdamped, the equation

96     Proc. of SPIE Vol. 5845



of motion is given by the Langevin equation

ẋ = −∂V (x, θ, t)
∂x

+ Fext + ξx(t) (5)

θ̇ = −∂V (x, θ, t)
∂θ

+ ξθ(t) (6)

where Fext is an external force and the Langevin force ξi is defined by

〈ξi(t)ξi(t′)〉 = 2Diδ(t − t′) i ∈ (x, θ) (7)

with a diffusion constant Di. In this paper, we assume Dx = Dθ = D. The time-dependent potential V (x, θ, t)
alternately takes one of the potential values Vi. We use two different switching method: one is a deterministic
periodic switching and the other is a stochastic transition based on the transition rates kij . The Langevin
equation is integrated using the Heun method and the average was taken over a sufficient number of realizations.

3. RESULTS

3.1. A single motor with two states

We first investigate simple cases using the two-state model. Figure 2 shows the average velocity of the motor
protein as a function of the conformational change ∆θ = θ1 − θ3. The parameter values are chosen such that the
powerstroke mechanism is possible only when ∆θ > 0.5. The left panel of Fig. 2 uses the periodic switching with
the period of T=4. The motor spends half the period in each potential. In the absence of diffusion (D = 0), the
only mechanism capable of providing motion is the powerstroke mechanism. In principle the motor can move
for ∆θ > 0.5 provided that there is enough time to reach an equilibrium point in each potential. Since T=4
is not long enough, power stroke actually takes place at a larger conformational change. When the diffusion is
activated, the motor moves even when the conformational change is smaller when the powerstroke is not possible.
This movement is due to the Brownian motor mechanism.

In Fig. 2b, the stochastic switching between V1 and V3 is used. Although on average the transition time
is equivalent to the periodic case, very slow or fast transitions can occasionally occur. The diffusionless curve
show the contribution of the power stroke. When the conformation change is large (∆θ > 1.0), the power
stroke dominates. On the other hand, only the Brownian motor mechanism generates the motion for the small
conformational change (∆θ < 0.5). In between, both the power stroke and Brownian motor contributes.

While it is difficult to investigate the stochastic dynamics of two degrees of freedom in general, some useful
insight can be obtained from an adiabatic limit. We assume that the motor protein spends sufficiently long time
on each potential such that it reaches to the equilibrium point on each potential. When the protein is in V1, the
probability density can be expressed as

P (x, θ, τ) = Prot(θ)Ptrans(x, τ)
= N exp(−αx2) exp(−βθ2) (8)

where Prot(θ) and Ptrans(x, τ) are probability densities for Uhlenbeck and Wiener processes, respectively. In the

second line of Eqn. (8), N = 1√
4πDτ

√
k

2πD , α = 1
4Dτ , and β = k

2D . Integrating the portion of P that lies over
the next potential well allows us to find the probability of making a step forward.

W+1 =
∫ ∞

−∞
dx

∫ (x−1/2)/r

−∞
dθProt(θ)Ptrans(x, τ) (9)

=
1
2

[
erf

( γ

2r

)
+ 1

]
(10)

where γ−1 =
√

m2

α + 1
β . Figure 3a shows close agreement between the adiabatic theory and the stochastic

simulation given a slow enough switching rate.
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Figure 2. The velocity of the motor proteins 〈ẋ〉 as a function of conformational change ∆θ. Parameter values K1 =
K3 = 1.0 and U3 = 1.0 are used and the average was taken over 100 samples. (a) Periodic switching with the period T=4.
(b) Stochastic switching with k̄13 = k̄31 = 0.5.
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Figure 3. (a) Comparison of adiabatic theory and numerical stochastic simulations. Parameters: ∆θ = 1.0, K1 = K3 =
1.0, U3 = 1.0, T = 16, D = 0.01; (b) The convergence of the adiabatic theory with stochastic simulations. Parameters:
∆θ = 0.5, K1 = K3 = 1.0, U3 = 1.0, D = 0.01
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Figure 4. (a) The movement of a single myosin head driven by trichotomous switching between V1, V2, and V3. (b)
Dimer system of motors driven by trichotomous potentials and coupled by the force in Eqn. 15. Parameters: U2 = 0.5,
U3 = 1.0, θ1 = 0.0, θ2 = −0.2, θ3 = 1.0, D = 0.1, k12 = k21 = 2.0, k23 = 0.05, k31 = 0.01, k32 = k13 = 0.0; dimer
interaction — F0 = 0.1, d0 = 5.0, ∆d = 2.0

3.2. A single motor with three states

We choose parameters for the three-state model described by Eqn. 4 such that rapid switching exists between V1

and V2 with a small conformational change between θ1 and θ2, allowing for the Brownian motor mechanism to
take place. As for the third state, the system doesn’t enter the state very often compared to the Brownian phase
of movement, and once it does the system is frozen until another ATP nucleotide binds to the motor domain.

In Fig. 4a, we observe a remarkable similarity between the simulation data and experimental data performed
on single molecules of myosin II.25 The motor protein is observed to move steadily for several periods during the
hydrolysis cycle of a single ATP nucleotide. The fact that single myosin heads move along an actin filament after
hydrolyzing a single ATP molecule in multiple steps that correspond very closely to the period of actin subunits
— 5.3 nm — is a phenomenon which lends support to a Brownian motor mechanism and which is replicated by
the simulation results seen in Fig. 4a.

3.3. Myosin V: a pair of coupled motors

In the previous section, we investigated the motility of a single myosin head. However, myosin proteins have
two motor domains attached to each bundled tail. The cooperation of each individual head is still unclear,
particularly with the myosin II found in skeletal muscle. However, experiments done on the processive myosin V
protein have yielded evidence that the two heads move in a coordinated way that when one is moving forward,
the other is bound to the actin filament.7, 23, 34 Such coordination has a big advantage since one of the heads is
always bound to the filament and prevents backward sliding or diffusion away from the filament. However, the
mechanism of this processive motion has not been determined yet.

It has been known that myosin V makes a stepwise motion with a large step length of 38 nm. Such a long
step can be explained by a lever arm mechanism since myosin V has a sufficiently long lever arm. However, it
is unlikely that such a big swing puts the head on the right spot on the actin filament, especially under strong
thermal fluctuation. It is more natural to assume that the actin filament navigates the heads.

Our model of myosin V consists of two motors each driven by the three-state model described in the previous
section. In addition, there is a coupling force between them. The equations of motion of the heads A and B are
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given by

ẋA = −∂V (xA, θA, t)
∂xA

+ Fext + FAB + ξxA(t) (11)

ẋB = −∂V (xB , θB, t)
∂xB

+ Fext + FBA + ξxB(t) (12)

θ̇A = −∂V (xA, θA, t)
∂θA

+ ξθA(t) (13)

θ̇B = −∂V (xB , θB, t)
∂θB

+ ξθB(t) (14)

where the coupling force takes the following form:

FAB = −FBA = F0σ(|xA − xB |) (15)

σ(|xA − xB|) = 1 + tanh
( |xA − xB | − d0

∆d

)
(16)

where the function σ(|xA − xB |) indicates the strain in the neck of the motor. This coupling is weak when the
distance between two heads are shorter than d0 but increases rapidly when the distance reaches d0, preventing
the heads from separating from each other beyond d0.

To make a step wise motion, there must be communication of some type between the two motors. When one
motor in front binds to the actin, the other in back must be detached and start to move forward. One possible
channel of communication is the mechanical strain caused by a large separation of the two heads. We assume
that the transition rate k31 increases when the distance between the motors reaches the limit. For simplicity, we
use a strain dependent transition rate k′

31 = k31σ(|xA − xB |).
Figure 4b illustrates typical trajectories of a coupled dimer. Similar to the experimental observation,7 the two

motors move processively. However, the step-wise motion with the large step length is not caused by a swing of
long lever arms. The motors mainly move as Brownian motors and act as an anchor when they strongly bind to
the actin filament. Since the Brownian motors often weakly bind to the filament, they move along the filament.

3.4. Response to applied force

In biological systems, motor proteins do work against an external load, be it as part of a contraction in muscle
fibers or pulling vesicle cargo in an intracellular environment. Fig. 5 shows the response of the model systems
discussed in the previous sections to a constant force. In Fig. 5a, the single motor driven by two-states model
shows a simple linear response. While it can move against external force the maximum load is rather small. This
is because the single head motor is detached from the actin filament during a certain period and slides back. On
the other hand, the dimer shows a distinct non-linearity. Since one of the heads is always bound to the filament,
the two motors maintain their position against a larger applied force despite the fact that it is beyond the ability
to continue moving forward in any fashion as shown in Fig. 5b. A similar nonlinear response is found in actual
muscle-load experiments.28

3.5. Cooperative Motion

The protein in skeletal muscle is arranged such that the long protein tails of myosin II are bundled into the
thick filament, with the individual myosin heads protruding at regular intervals along the filament. Here we are
interested in the cooperative motion of the entire bundle as each motor protein interacts with the actin filament
as well as the protein bundle to which it is attached. To simulate the arrangement of myosin in muscle fibers,
each motor is assumed to interact with a large backbone filament through a spring. The equations of motion for
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Figure 5. (a) Two state model response to externally applied force. Parameters: K1 = K3 = 1.0, U3 = 1.0, T = 16,
D = 0.01; (b) Three state and three state dimer response to applied force. Parameters: U2 = 0.5, U3 = 1.0, θ1 = 0.0,
θ2 = −0.2, θ3 = 1.0, D = 0.1

N motors coupled to one thick filament are modeled by

ẋn = −∂V (xn, θn, t)
∂xn

− Kb(xn − Xn) + ξxn(t) (17)

θ̇n = −∂V (xn, θn, t)
∂θn

+ ξθn(t) (18)

Ẋ =
1
Γ

(
N∑

i=1

Kb(xn − Xn) + Fext

)
(19)

where Xn = X + nD(n = 1, . . . , N) is a point on the thick filament where the n-th myosin is attached and
D is the nearest neighbor distance between myosins. The individual motors xn independently interact with
their immediate actin filament according to the two-state model, while their interaction with the thick filament
is governed by Kb(xn − Xn). The velocity of the thick filament is given by Ẋ(t) which is subject to a large
drag Γ and pulled by the sum of the individual motors through the spring interactions. The effect of Γ on the
sliding velocity of the filament is seen in Fig. 6a. As expected for a large number of motors, the drag on the
backbone has a diminishing effect, but the maximum velocity of the filament cannot be any faster than that of
the individual motors. The maximum attainable force by the filament and motors, on the other hand, increases
linearly with the number of motors attached depending on the strength of the spring interaction, Kb.

4. DISCUSSION

Despite the variety of models that have been proposed since Huxley first discovered the sliding filament model of
muscle contraction, underlying elements of similarity should exist between the different families of myosin. The
model proposed here attempts to resolve some of those differences. Experimental evidence favors a Brownian
motion model for cooperative motors such as myosin II, modeled here by the shallow change in the stable angle
∆θ between two chemical states. Single-molecule experiments have shown that myosin can take several small
steps during the hydrolysis cycle of only one ATP molecule.25

Experiments conducted with myosin V on the other hand have shown a great deal of evidence lending
credence to the concept of a hand-over-hand model in which the individual heads of the motor work together in
a cooperative manner of some sort giving rise to the processive motion. Incorporating this feature into the model
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Figure 6. Cooperative motion between N motors and a single thick filament. (a) Velocity response to a fixed drag Γ
on the backbone of the myosin bundle. Parameters: K1 = K3 = 1.0, U3 = 1.0, ∆θ = 1.0, k13 = k31 = 0.125, D = 0.01,
Kb = 10.0 ; (b) Maximum attainable force (Fstall) by N motors coupled by a spring to a protein bundle. Parameters:
K1 = K3 = 1.0, U3 = 1.0, ∆θ = 1.0, k12 = k21 = 0.125, D = 0.01, Γ = 20.0

presented here amounts to simply increasing the stable angle between states to a larger value corresponding to
a deterministic stroke.

The beauty of the model presented here, is that given different parameters and definitions for the interaction
between individual motor proteins, we can qualitatively reproduce many of the results already collected by
researchers in both the fields of processive and non-processive motors. More experimentation remains to be done
to discover the extent to which this model works.
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