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We investigated three models of Brownian motors which convert rotational diffusion into directed transla-
tional motion by switching on and off a potential. In the first model a spatially asymmetric potential generates
directed translational motion by rectifying rotational diffusion. It behaves much like a conventional flashing
ratchet. The second model utilizes both rotational diffusion and drift to generate translational motion without
spatial asymmetry in the potential. This second model can be driven by a combination of a Brownian motor
mechanism �diffusion driven� or by powerstroke �drift driven� depending on the chosen parameters. In the third
model, elements of both the Brownian motor and powerstroke mechanisms are combined by switching be-
tween three distinct states. Relevance of the model to biological motor proteins is discussed.
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I. INTRODUCTION

The mechanisms of motor protein motility have been a
major research topic in biophysics and biomedical research
for several decades �1�. Pioneering work by Huxley and his
co-workers �2,3� established a mathematical model for
muscle fiber contractions based on a so-called powerstroke
�1,4� involving the conformational change induced by ATP
hydrolysis in the cross-bridges formed between the myosin
and actin filaments. This conformational change in the neck
region of myosin has been confirmed by various experiments
�5–10�. Based on Huxley’s model, it has been believed that
this conformational change induces a swinging motion of the
myosin �lever arm hypothesis� �1,11�, rotational motion
about the neck which is in turn converted into linear transla-
tional motion. This model suggests that a motor protein uti-
lizing a powerstroke would behave like a stepping motor
with a fixed step length per ATP consumption. In addition,
the step length is expected to be proportional to the neck
length of the proteins.

Recent single molecule experiments testing a variety of
protein mutants with different neck lengths support the lever
arm mechanism of protein motility �12–18�. Other recent ex-
periments have emphasized both the length of the motor pro-
tein neck as well as the magnitude of the angle through
which it swings during a powerstroke in an attempt to ex-
plain the unusually long step length of Myosin Id �19�. How-
ever, some similar experiments showing unexpected step
sizes for a given neck length appear to be inconsistent with
the lever arm model �20–29�. In these experiments, proteins
must somehow move over several steps during a single
chemical cycle in order to produce the observed step size.
Some experiments showed that the speed of the motor pro-
tein is independent of the neck length in contradiction with
other experiments �23�. Furthermore, the step length of cer-
tain motor proteins seems too long compared with their neck
length �30,31� and some diffusive steps appeared to be nec-
essary �11,32,33�.

The filaments along which motor proteins move are poly-
mers made up of polar units with a “plus” and a “minus”

end. Most myosin-based motor proteins move preferentially
towards the plus end of the actin filament track. Myosin VI
moves in the opposite direction �27,28,31,34�. In addition,
other motor proteins such as Myosin IXb recently have been
observed to move in the opposite direction under certain con-
ditions �35,36�. These anomalous motor proteins are structur-
ally very similar to their plus-ended counterparts. It has been
observed that when the lever arm is engineered in a certain
way, the motor moved in the opposite direction �37�. In the
case of Myosin VI, it has been speculated that the naturally
occurring protein moves preferentially towards the minus
end of the filament through a similar mechanism �34�. How-
ever, the actual mechanism determining the directionality
still remains unknown.

The majority of motor proteins are comprised of two mo-
tor domains that work in conjunction with each other to pro-
duce directed motion. The two heads are particularly crucial
to the models put forth to describe processive motors such as
Myosin V, which move through many ATP hydrolysis cycles
before detaching from its filament �1,38�. Most of the pre-
vailing models on processive motor movement require the
two motor domains to work in sequence, alternating attach-
ment states allowing the motor to move forward without
completely releasing from the filament �33,39–41�. However,
some motor proteins such as Myosin IXb have only a single
motor domain and yet is still a processive motor �35,36,42�.
In addition, numerous other experiments have been per-
formed on single headed molecular motors, both naturally
occurring and derived single-headed mutants. They show a
continued ability to move and produce a force against an
external load despite the obvious structural deficiencies with
regards to the models based on two-head mechanisms
�30,43–46�.

Apart from these recent experimental findings, new mod-
els for motor proteins based on the idea of Brownian motors
have been intensively investigated during the last decade
�47–51�. When Brownian particles are in a periodic but spa-
tially asymmetric potential and away from thermal equilib-
rium, they can generate mechanical work by rectifying ther-
mal fluctuation �52�. Since motor proteins move along an
asymmetric filament and ATP hydrolysis creates nonequilib-
rium conditions, it has been proposed that motor proteins
could be described by a Brownian motor model �47–51�. A*Electronic address: kawai@uab.edu
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Brownian motor based on the flashing ratchet model moves
as a step motor consistent with experiments. However,
Brownian motors also provide for the possibility of moving
more than one step per chemical cycle in contrast to the
powerstroke model. Furthermore, the step length of the
Brownian motor is independent on the neck length. These
features possibly account for some of the experimental data
which the powerstroke model fails to explain �30,53�.

The powerstroke model and Brownian motor model has
been thought of as two opposing extremes in the search for
motility mechanisms of molecular motors. In the former,
thermal fluctuations have no role at all. On the other hand,
the latter is incapable of producing motion without thermal
fluctuations. As a result, it was commonly believed that only
one of them is the correct mechanism. However, it has re-
cently been postulated that both mechanisms may be in-
volved in the actual motor proteins �11,32�.

The purpose of the present work is to develop a single
mathematical model that includes both powerstroke and
Brownian motor mechanisms. Since the coupling between
the rotational and linear translational degrees of freedom is
essential to the powerstroke mechanism, our first step is to
develop a model which couples rotational motion to linear
motion �Sec. II�. In the first model �Sec. III�, we demonstrate
that free thermal diffusion in the rotational degree of free-
dom is sufficient to induce directed linear motion via a flash-
ing ratchet mechanism. A model based on the behavior of
motor proteins that is discussed in Sec. IV shows directed
translational motion driven by either a Brownian motor or a
powerstroke mechanism depending on the parameters used.
A more realistic motor protein model involving three chemi-
cal states is proposed in Sec. V. This motor is simultaneously
capable of both powerstroke and Brownian motor mecha-
nisms during a single chemical cycle. Relevance of the
present models to actual biological motors is discussed in the
final section.

II. ROTATION-TRANSLATION COUPLING

While various mathematical models for molecular motors
driven by rotation-translation coupling have been proposed
in the past �54,55�, these models are not closely related to
known biological molecular motors. A more realistic model
is necessary to explain the experimentally observed behav-
iors of biological molecular motors, such as step size distri-
butions and velocity-force relationships. Here, we try to de-
velop a mathematically simple, yet sufficiently realistic
model by taking into account experimental observations as
much as possible.

Motor proteins undergo two major conformational
changes during a chemical cycle, first when ATP hydrolysis
takes place and second when ADP is released from the pro-
tein. The main change occurs between the head and neck of
the protein such that the angle between the neck with respect
to the head changes. For simplicity, we consider a simple rod
of length �=2r as a motor particle whose degrees of freedom
are defined as the position of the center of mass x and a
rotational angle � around the center �measured from the nor-
mal to the filament�. Since free rotation does not generate

translational motion, it is therefore necessary to couple the
rotational motion with the translational degree of freedom.
Since the release of ADP occurs when the protein is attached
to the filament, a large conformational change in the neck
associated with the release would produce a rotation about
the point of attachment to the filament. The resulting motion
about that pivot point produces translational motion of the
center of the motor that is proportional to r sin � as shown in
Fig. 1.

The potential energy of the motor in the bound state is
determined by the location of the contact point xP and the
orientation of the motor �. In general, these two degrees of
freedom are weakly coupled but not in a way to produce a
directed translational motion out of the swing motion. There-
fore, we assume an uncoupled form of potential energy:

V�xP,�� = Urot��� + Utrans�xP� , �1�

where Urot represents a conformational change in the neck
region of the protein and Utrans is a binding energy between
the motor and the filament. Since the filament is periodic, the
binding energy is also periodic as Utrans�xP+L�=Utrans�xP�
where L is the period of the filament. Noting that xp and
center-of-mass coordinate x are related by xP=x−r sin ��x

FIG. 1. Model for molecular motors with a coupled rotational
and translational mechanism for producing directed motion. �a� Un-
bound state. Unattached of its filament track, the motor is free to
thermally diffuse in both x and �. The resulting probability distri-
bution A is shown in the lower image. In principle, Dx�D� so A is
depicted as an ellipse. The dashed lines depict the location of the
potential barriers in the bound state for a point of reference. �b�
Bound state. Upon binding to its filament, the pivot point P of the
motor shifts towards the binding site, activating the coupling be-
tween rotation and translation. The potential contours shown in the
lower image corresponding to the bound state, depict the probability
of remaining in the same potential well at A or moving to the next
at B. As can be seen here, an asymmetric potential U�x� is required
to bias the motion of the motor.
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−r� �56�, the binding energy as a function of x and � is given
by

V�x,�� = Urot��� + Utrans�x − r�� . �2�

This potential energy function provides the desirable form of
coupling between rotational and translational degrees of free-
dom, allowing for the conversion of rotational motion to
translational motion as shown below.

III. A TWO-STATE BROWNIAN RATCHET DRIVEN BY
ROTATIONAL DIFFUSION

Although motor proteins in general have several chemical
states during ATP hydrolysis, we will restrict this discussion
to a two-state model describing a bound and unbound state
for a motor protein. When a potential is absent �unbound
state� the motor freely diffuses in its two degrees of freedom,
x and �. As soon as the potential is turned on �bound state�,
the motor drifts toward a local potential minimum. Switching
between these two states will produce net movement in the x
direction when the potential is asymmetric along x. To illus-
trate this ratchet mechanism, consider motors confined to an
equilibrium point A of the potential well, as seen in Fig. 1�b�.
When the potential is removed, the motors diffuse over the
shaded area in Fig. 1�a�. As the potential turns on again, a
portion of the shaded area now belongs to the basin of next
potential minimum B in Fig. 1�b�. The motors that reached
this area advance to the new minimum B. The rest of the
motors move back to the original minimum A. In the particu-
lar case shown in Fig. 1, the translational diffusion alone is
too small to generate directed motion. However, the addition
of the rotational diffusion brings the motors to the next basin.

This two-dimensional Brownian ratchet mechanism can
be put into a simple mathematical expression in a slow
switching limit �48�. Assuming that the potential Utrans is
sufficiently deep and the transitions between unbound and
bound states are slow, the initial probability distribution of
the motors is given by P�x ,� , t=0�=��x−xA����−�0�. When
the potential is removed, the distribution spreads with diffu-
sion constants Dx and D� as

P�x,�,t� = Prot��,t�Ptrans�x,t�

=
1

2�t�DxD�

exp�−
�x − xa�2

2Dxt
−

�� − �0�2

2D�t
� . �3�

When the potential is reinstated at t=�, the probability that
the motors leave the basin of the current potential wells in
the forward �+x� and backward �−x� direction are given by

W+��� = 	
−�

�

dx	
−�

�x−d�/r

d�P�x,�,��

=
1

2
erfc� d

��2Dx + 2r2D���
� �4�

and

W−��� = 	
−�

�

dx	
−�x+L−d�/r

+�

d�P�x,�,��

=
1

2
erfc� L − d

��2Dx + 2r2D���
� , �5�

where d is the shortest distance between the potential mini-
mum and maximum �see Fig. 1�b�� and erfc is the comple-
mentary error function. If the motor is in the unbound state
for period tu and in the bound state for tb during one on-off
cycle, then the average velocity of the motor is about

v̄ �
L

tb + tu
�W+�tu� − W−�tu�� . �6�

Here we neglected the possibility for the motors to diffuse
beyond the nearest neighbor potential wells. When the po-
tential is symmetric �d=L /2�, W+=W− and thus no net di-
rected motion occurs.

The above discussion can be further confirmed by a direct
simulation of Langevin equations for the overdamped motor
operated at a temperature T,

�x
dx

dt
= −

�V�x,��
�x

��t� + �2kBT�x�x�t� + F , �7a�

��

d�

dt
= −

�V�x,��
��

��t� + �2kBT�����t� , �7b�

where F is an external load and �i is a Gaussian white noise
define by


�i�t�� j�t��� = �ij��t − t��, i, j � �x,�� . �8�

The on-off function ��t� takes values 0 and 1 alternatively
with transition rates kon and koff. Although in general �x
would have an angular dependency according to the current
orientation of the rod, here we assume that it takes constant
values.

As a simple model system we use a ratchet potential in
the x direction,

Utrans�x� = U0�3

4
cos�2�

L
x� −

1

4
sin�4�

L
x�
 , �9�

and a simple harmonic potential with a spring constant K for
rotation,

Urot��� =
K

2
�� − �0�2. �10�

For simplicity, a value of K=1.0 will be used throughout the
current study.

To reduce the number of parameters, we normalize time,
distance, and energy as

t̃ �
U0t

L2�x
, x̃ �

x

L
, Ũ �

U

U0
�11�

and accordingly parameters are normalized as r̃=r /L, K̃

=K /U0, F̃=FL /U0. For simplicity, we will omit the tilde on
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the normalized quantities. Then, the equations of motion �7�
become

dx

dt
= −

�V�x,��
�x

��t� + �2D�x + F , �12a�

d�

dt
= − 	

�V�x,��
��

��t� + �2	D��, �12b�

where the diffusion constant is defined by D=kBT /U0. A
dimensionless constant 	=r2�x /�� is determined by the de-
tailed shape of the motor. The contribution of rotational de-
gree of freedom is controlled by the shape of the motor and
hence the value of 	. When 	=0, the rotational motion has
no contribution and the present model is equivalent to a con-
ventional flashing ratchet. For 	
1, the rotational diffusion
plays a more significant role than the translational diffusion.

Integrating the coupled Langevin equations in Eq. �12�
with the Heun method, we can explore the dynamics of this
stochastic model. Examining the trajectories of numerous
motors allows us to determine the average behavior of the
system. For our purposes, an average over 500 realizations of
the system will be sufficiently accurate.

Figure 2 shows that the velocity contains no dependence
on r for 	=0.0 as expected. For nonzero values of 	, the
velocity begins to increase with the motor length r beyond
the values expected from the translational ratchet alone,
showing that the rotational component of the motion intro-
duces an additional mechanism for producing directed mo-
tion in the motor. The speed of the motor increases in a
roughly linear fashion with respect to the motor length r
similar to the way that most motor proteins are thought to
behave. As the length of the motor increases, a change in the
angle � will give the motor a longer reach, enabling it to

move several potential periods over one cycle with a suffi-
ciently long motor. As seen in Fig. 2, the rotational motion
contributes to the motion with increasing r until the motor is
long enough to reach the nearest neighboring potential well.
Beyond a certain length, the velocity is expected to saturate,
until it is then long enough to reach the next nearest neigh-
bor. This behavior is corroborated by the expected behavior
of the long time limit case for these various values of 	.
Figure 2 shows close agreement between Eq. �6� described
above and the stochastic simulations.

By applying a constant load F�0, we can investigate the
ability of this model to do work against a load. Figure 3
shows the results of two cases: 	=10.0 where the rotational
diffusion dominates and 	=1.0. where rotational and trans-
lational diffusion equally contribute to the motion. The limit
where the motor moves primarily under rotational diffusion
exhibits a nonlinear response to an applied load. Upon mov-
ing towards the limit of equal contributions �i.e., 	=1.0� the
nonlinearity disappears. The nonlinearity is therefore due to
the anisotropic diffusion.

IV. A TWO-STATE BROWNIAN MOTOR WITH
POWERSTROKE

In the previous model, coupling between the rotational
and translational degree of freedom takes place only when
the motor protein is bound to an active site on the filament.
The rotation toward an equilibrium angle advances the motor
to a minimum within the basin of the potential well. We shall

FIG. 2. The relationship between average motor velocity and the
motor radius r. The circle markers correspond to 	=0.0, the squares
to 	=1.0, and the triangles to 	=10.0. The case 	=0.0 corresponds
to a purely translational ratchet. For nonzero 	 with a sufficiently
large value for r, the rotational component of the motion provides a
unique contribution to the motor velocity. The solid lines corre-
spond to the long time limit velocity obtained from Eq. �6�. Param-
eter values, tu=5.0, tb=100.0, K=1.0, D=0.0075, d=0.36.

FIG. 3. The effect of applying a constant load F�0 to a motor
according to the equations of motion given by Eq. �12�. �a� We see
a distinct nonlinear behavior towards the application of an increas-
ing external load F when the motion relies primarily upon the ro-
tational ratchet mechanism. Parameter values, 	=10.0; K=1.0;
kon=koff=0.5. �b� The nonlinear behavior disappears when equal
proportions of both translational and rotational ratchet are used.
Parameter values, 	=1.0; K=1.0; kon=koff=0.5.
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call this rotation the forward stroke. The forward stroke how-
ever cannot drive the motor over the potential barrier and
only diffusion, rotational or translational, brings the motor to
the next potential well. On the contrary, in the standard pow-
erstroke model conformational change of the motor protein
drives the motor without diffusion. The key point of the pow-
erstroke model is the presence of the recovery stroke which
the motor performs when it is unbound. Molecular motors
typically consist of a motor domain attached to a neck and
tail region. The tail region typically binds to some sort of
cellular cargo or, in the case of skeletal muscle, the tail binds
together with other proteins to form a bundle that works in
tandem. As opposed to our free floating motor presented in
the preceding section, the motor protein does not freely ro-
tate in the unbound state and instead is driven to an equilib-
rium angle by the recovery stroke.

As an alternate model to our previous Brownian ratchet,
we consider a motor which is not entirely free to move, but is
tethered by one end to some external object assumed to be
much larger than itself. When the motor is unbound, it ro-
tates about the pivot point P� toward an equilibrium angle �1
�recovery stroke� as illustrated in Fig. 4�a�. When the motor
binds to the filament, the pivot point shifts to the other end of
the motor, P in Fig. 4�b�. The motor rotates to a new equi-
librium angle �2 about this point �forward stroke�. The two
different equilibrium angles �1 and �2 represent conforma-
tional changes in the motor proteins due to ATP hydrolysis.

Suppose that the motor is located at a bound state A in
Fig. 4�b�. Upon detaching from the filament, the recovery

stroke takes the motor from A� to B in Fig. 4�a�. If the con-
formational change, ���=���2−�1� is large enough, the
point B is in the basin of the next potential well. When it
binds to the filament, the forward stroke brings the motor to
C, generating a net translational motion from A to C. This
process is entirely deterministic and the directed motion is
generated simply by alternating forward and recovery rota-
tions without diffusion. However, the motor is still subject to
large thermal fluctuation, which may hamper the power-
stroke. Indeed, the thermal fluctuation brings some motors
back to the basin of the original potential well as illustrated
in Fig. 4 and thus reduces the average speed. On the other
hand, the thermal fluctuations also make a positive contribu-
tion to the directed motion especially when the powerstroke
fails. For example, one could imagine a motor prematurely
binding to the filament before the recovery stroke completes.
In a deterministic model that powerstroke would fail to ad-
vance the motor to the next potential well. With the addition
of the thermal diffusion, some of the motors that would fail
the powerstroke are able to reach the next potential well with
help of that diffusion. Furthermore, when the conformational
change ��� is too small to reach the next minimum, the
Brownian motion is still capable of producing directed mo-
tion on average.

Unlike the previous model, rotational diffusion in the un-
bound state is accompanied by a drift due to the conforma-
tional change ���. This rotational drift determines the direc-
tion of motion. When the sign of ��� is reversed, the motor
moves in the opposite direction. Recent experiments have
exhibited such flux reversal for motors modified to swing
their neck in the opposite direction to the original motors
�34,37�. Since the symmetry is broken by these conforma-
tional changes, it is not necessary for the potential to break
the symmetry along the x axis. A simple periodic potential in
the normalized units described earlier will suffice for our
purposes,

Utrans�x� = cos�2�x� . �13�

The net potential for the unbound and bound states are, re-
spectively, given by

V1�x,�� =
K

2
�� − �1�2, �14a�

V2�x,�� =
K

2
�� − �2�2 + Utrans�x − ��� , �14b�

where x is now the position defined by the neck of the motor
protein at P�. The movement of the motors is determined by
the Langevin equations in normalized units,

dx

dt
= −

�V�x,�,t�
�x

+ �2D�x + F , �15a�

d�

dt
= − 	

�V�x,�,t�
��

+ �2	D��, �15b�

where the time-dependent potential is defined as V�x ,� , t�
=V1�x ,���1−��t��+V2�x ,����t�.

FIG. 4. A model for motor proteins with one end of a motor of
length � tethered to an external cargo. �a� Unbound state. As before,
the motor is free to diffuse in x and �, but � drifts toward a stable
angle �1. Overlaid on the potential contours is the new probability
distribution at B centered about �1, away from the potential mini-
mum of the bound state �shown at A��. �b� Bound state. On binding,
the pivot P shifts, giving rise to the coupling term in Utrans�x�. Here
the stable angle for the bound state �2 is not necessarily equal to �1.
Given a large enough change in the protein conformation between
the bound and unbound states ���=���2−�1�, motion can occur
deterministically without the need for the probability distribution
at B.
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We begin by examining the relative change in the confor-
mation ��� between the two states V1 and V2. Figure 5
shows the average velocity of the motor as ��� is increased
for several different values of the diffusion constant D. In the
case of D=0.0, the thermal fluctuations are disabled. For a
small neck length � or a small ��, no velocity is observed.
However, once the critical value of ����0.5 is reached, the
motor begins to move without the need of the thermal fluc-
tuations. This deterministic motion corresponds to a power-
stoke motion, related both to the neck length of the motor
given by � and the angle through which the motor rotates
between the unbound and bound states. Although in principle
the motor moves forward one potential through each hy-
drolysis cycle, close to the critical value of ��� the motor
would require a very long switching time to relax to the
potential minimum of the bound state in order to achieve that
expected velocity.

In the case of D�0, Fig. 5 shows that even for small
values of D motion can be seen in the region of ����0.5
where the deterministic powerstroke was not possible. The
thermal fluctuations of the medium surrounding the motor

can be rectified to produce a nonzero average velocity. The
mechanism for rectifying the thermal fluctuation follows the
Brownian ratchet mechanism from the coupled rotational and
translational coupling described in Sec. III.

Also of interest is the case where ����0. This parameter
regime would be equivalent to a motor taking a powerstroke
in a negative direction, and as a result Fig. 5 shows an aver-
age negative velocity for the motor. This observation is of
potential interest in describing the motion of motor proteins
such as Myosin VI, observed to move in the opposite direc-
tion as the plus-ended Myosin V proteins. Using the angle
�1=0.0 for the unbound configuration gives a completely
symmetric response given the symmetric nature of Utrans�x�.
On the other hand, by fixing the bound stable angle �2 to
some nonzero value, the symmetry disappear. To meet the
conditions for ����0 with �2 fixed, �1 must become in-
creasingly large to obtain any negative motion. The harmonic
potential term in Eq. �14� quickly becomes too large to sus-
tain negative motion and drives the motor back towards the
positive. It is likely that this case is not well represented by
the current model and this behavior is an artifact of the ap-
proximations that Urot is a harmonic potential and r sin �
�r�.

In summary, the diffusionless curve in Fig. 5 shows the
contribution of the deterministic motion. When the ��� be-
comes very large ����
1.0�, the deterministic motion
dominates the model. For small changes in the angle ����
�0.5�, the Brownian ratchet mechanism dominates. Between
these two limits a combination of the two mechanisms con-
tribute to the average velocity of the motor. The resulting
model forms a very robust motor that can produce directed
motion under a wide variety of parameters.

As before, the ratcheting motion found in this model can
be studied analytically in the long time limit as described
before with little difference. However the limits of the inte-
gral in Eq. �4� change to take into account the change in the
angle �i between states. The new forms for W+ and W− can
be obtained by replacing d with L /2−��� in Eqs. �4� and
�5�. A nonzero ��� breaks the symmetry of the system and
gives rise to W+�W− even though we are using a symmetric
potential. The resulting current then follows the same form
as stated in Eq. �6�. In comparing the results of the long time
limit calculation to the stochastic simulations in Fig. 6�a�, we
again find close agreement to the motion seen in the long
time limit.

Motor proteins typically bind a large cargo to their tail in
order to transport it from one part of a cell to another. As
before, we can apply an external load F�0 to these motors
to study their ability to pull such a load that might be at-
tached to it. In Fig. 6�b�, the same type of linear behavior is
observed as before with the previous model. However, Fig.
6�b� also shows that as the value of ��� is increased the
maximum force with which the motor pulls increases. It has
been postulated that a Brownian ratchet is unlikely to be a
mechanism for motor proteins as those models tend to pro-
duce forces too small to account for the forces observed ex-
perimentally �1�. Based on the present results, it appears that
as we increase the contribution of powerstroke to the func-
tion of the motor, the ability of the motor to transport cargo
more effectively also increases.

FIG. 5. �a� The average velocity of the motor 
ẋ� as a function of
the change in the stable conformations ��� between the two states
with the unbound angle �1 fixed. Parameter values, tu= tb=4.0; K
=1.0; �1=0.0; 	=1.0. �b� The average velocity as a function of ��
with the bound stable angle �2 fixed. Parameter values, tu= tb=4.0;
K=1.0; D=0.01; 	=1.0.
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V. A THREE STATE MODEL

The cyclic chemical reaction that myosin undergoes as it
hydrolyzes ATP can be expressed with varying degrees of
precision involving numerous substeps of the reaction
�1,57,58�. Detailed analysis of the structure of myosin S1 has
indicated the existence of at least three distinct conforma-
tional states dependent on the state of the bound ATP mol-
ecule. �5–9,59�. In addition, some myosin working strokes
have been resolved into at least two distinct substeps
�26,32,60�, yielding more evidence of multiple conforma-
tions of the motor protein. Here, we will utilize three distinct
conformational states with a chemical reaction scheme simi-
lar to the simple mechanochemical trigger model put forth by
Keller and Bustamante �57�. This setup enables us to create a
hybrid motor that contains elements of both a Brownian mo-
tor as well as a deterministic powerstroke.

Following the cyclic reaction scheme shown in Fig. 7, the
transition between a motor containing ATP in an unbound
state and its subsequent weakly bound state to an actin fila-
ment as the ATP is broken down into ADP and Pi is revers-

ible. This transition induces a small conformational change
���12=���2−�1� which is not big enough to perform a pow-
erstroke. However a back and forth transition between this
unbound and weakly bound state can generate directed mo-
tion by rectifying rotational diffusion as discussed in the pre-
ceding sections. The transition from a weakly bound to a
strongly bound state involves the irreversible release of the
inorganic phosphate Pi and is accompanied by a larger
change in the conformational state ���23=���3−�2� provid-
ing the powerstroke. Completing the cycle involves the re-
lease of ADP and binding of a new ATP molecule, returning
the motor protein to an unbound state. Cycling along these
three states, the motor has the capability of utilizing both the
Brownian motor and powerstroke mechanisms.

Comparing the typical trajectory of this model shown in
Fig. 7 to single molecule experiments performed in recent
years shows a possible mechanism explaining observed be-
havior. The model presented here exhibits occasional back-
ward steps and multiple forward steps during the Brownian
ratchet phase similar to the events observed by Yanagida’s
group �20,30�. The additional powerstroke as the motor en-
ters the strongly bound state provides another step forward
along the potential, similar to the two stage working stroke
observed in some experiments �26,32,60�.

Figure 8�a� demonstrates the change in velocity as both
the magnitude of the powerstroke and the conformational
change associated with the Brownian motor are increased. In
the case of ���12=0, the Brownian motor mechanism makes
no contribution to the velocity of the motor. As ���12 is
increased, the Brownian motor mechanism has the capability
of tripling the overall speed of a motor, implying that the

FIG. 6. �a� An analysis of the tether motor system showing both
the case of small and large values of D. The markers correspond to
the Langevin simulation and the lines correspond to the long time
limit theory. Parameter values, tu= tb=16.0; K=1.0; 	=1.0. �b� An
external load F�0 applied to a two-state tethered motor system.
Parameter values, tu= tb=16.0; K=1.0; D=0.01; 	=1.0.

FIG. 7. A three state reaction scheme for a motor protein and a
typical trajectory for such a motor. Rate constants governing the
reaction are labeled as kij and the conformational angle for each
state is �i where i , j� �1,2 ,3�. Trajectory parameter values, D
=0.01; 	=1.0; k12=0.5, k21=0.2, k23=0.2, k31=0.004; U2=0.2,
U3=1.0; K=1.0; ���12=0.2, ���23=1.0.

BROWNIAN MOLECULAR MOTORS DRIVEN BY¼ PHYSICAL REVIEW E 74, 011912 �2006�

011912-7



motor could take on average two extra steps during the
Brownian motor phase of the hydrolysis cycle with adequate
tuning of the parameters. As seen in Fig. 8�b�, this three state
system has the added advantage of withstanding a larger ex-
ternal load opposing the motion than the simpler two-state
model.

VI. DISCUSSION

Conventional Brownian ratchets encounter various diffi-
culties when applied to biological motors. In the present
model, coupling the translational and rotational degrees of
freedom preserves the conventional translational ratchet
mechanism, but also provides a means to produce transla-
tional motion through rectifying thermal fluctuations in the
rotational degree of freedom. Further, with the addition of an
asymmetric conformational change between bound and un-
bound states, we obtain a model capable of rectifying ther-
mal fluctuations without the need for an asymmetric poten-
tial. In the conventional Brownian ratchet model the
direction of the motion is determined by a spatial asymmetry

in the translational degree of freedom. However, in the
present model, the direction of motion is determined by the
asymmetry in the conformational change in the motor pro-
teins rather than the asymmetry in the filament, consistent
with experimental observation �34,37�. If this conformational
change between the bound and unbound states is large
enough, the motor gains the added ability to move by pow-
erstroke without diffusion. Depending on the parameters
chosen, either mechanism can be utilized ultimately gaining
the benefits of both.

With the minimal three chemical state description detailed
in the preceding section, we introduce a realistic model for
single headed motor proteins, which captures various quali-
tative properties of motor proteins. Recent experiments on
monomeric Myosin I have emphasized the importance of
both the neck length and the degree of neck rotation in de-
termining the step size of a motor protein �19�. The present
model takes both factors into account in defining the coordi-
nate of conformational change as ���. Other single molecule
experiments have resolved at least two distinct conforma-
tional changes during the working stroke of Myosin I �60�,
one corresponding to a displacement of �6.5 nm and an-
other of �5.5 nm, both very close to the size of the actin
filament repeat. The multiple steps observed in Myosin I can
be explained by the different phases of motion through an
ATPase cycle of the present model. As seen in the trajectory
in Fig. 7, a diffusive step followed by a powerstroke would
each produce displacement in a series of steps equal to the
filament periodicity L.

Many single molecule experiments with Myosin II have
observed step sizes on the order of 4–10 nm �20,30,61–65�.
However, according to Tanaka et al. �63�, a random orienta-
tion of myosin with respect to an actin filament produces the
observed average working stroke of �5.5 nm. When myosin
is close to its natural orientation with respect to actin as it
would be in a whole fiber, the step size is closer to three
times that value, or �15 nm. Kitamura et al. �30� observed
substeps of �5.3 nm along actin subunits. As the dwell time
of these substeps had no dependence on ATP concentration,
it was proposed that an average of 2.5 substeps during a
single ATPase cycle makes up the observed �13 nm step per
ATP molecule consumed. A simple deterministic motor pro-
tein should take a single step per ATP molecule consumed.
However, as illustrated in Fig. 8�a�, a motor protein with
���12=0.5 on average should take roughly two 5 nm diffu-
sive steps along the filament subunits in addition to the pow-
erstroke during the consumption of a single ATP for a total
step size of 15 nm.

In the case of dimeric, processive motor proteins like
Myosin V, models for the processivity involve some type of
coordination between the two motor domains of the myosin.
Investigations into single-headed Myosin V motors have re-
vealed a directional force dependence on the kinetics that
regulate ATP hydrolysis �45,46�. These force dependent ki-
netics indicate a possible method of communication between
the two individual motor domains. When the leading head of
the motor pair finds its binding site on the actin filament and
enters a strongly bound state, the strain caused on the trailing
head encourages its release from the filament. At the same
time the release of the leading head is slowed, effectively

FIG. 8. �a� Motor velocity as a function of varying conforma-
tional changes from state 1 to 2, and from state 2 to 3. Parameter
values, D=0.01; 	=1.0; k12=0.5, k21=0.2, k23=0.2, k31=0.004;
U2=0.2, U3=1.0; K=1.0. �b� Motor velocity as a function of an
applied load F�0. Parameter values, as in �a� with ���23=1.0.
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anchoring the motor protein to the filament allowing the
trailing head to swing forward and find its next binding site.
While this motion of the trailing head forward is thought as
a powerstroke process �10,33,39–41�, some recent experi-
ments suggest an alternative. The working stroke of a single-
headed Myosin V motor protein produces a displacement of
only �25 nm, significantly shorter than the observed step
size of 36 nm for wild type two-headed Myosin V �32�. The
motion of this wild type Myosin V has since been resolved
into a 12 nm step followed by a 24 nm step �66�. Due to the
insufficient length of the working stroke of a single-headed
Myosin V motor, it has been proposed that the powerstroke
of the leading head partially positions the trailing head and
the remaining distance is covered by a diffusive process
�11,32�. Others have shown that single headed Myosin V
molecules can move processively with the motor protein
held in close proximity to the filament �44�. In this study it
was proposed that through a series of diffusive steps utilizing
a strain sensors similar to the one demonstrated by Veigel et
al. �45� and Purcell et al. �46�, a single motor protein can
achieve a step size of 32 nm.

Myosin VI, another dimeric motor protein, has a neck
length much less than that of Myosin V, yet still produces a
step length of similar size �26,31�. As a result, any determin-
istic powerstroke of this motor protein probably has little to
do with its step and is most likely driven by thermal motion.
The present model provides a single mechanism allowing a
motor to take advantage of both diffusion as well as a sub-
sequent powerstroke and anchoring. Given the large neck of
Myosin V, a significant powerstroke on the order of 25 nm
would be reasonable based on a large value for �, followed
by a Brownian motor phase positioning the trailing head at
its full step distance from the leading head. On the other
hand, a model for Myosin VI could rely heavily upon the
Brownian motor mechanism in order to reproduce the ob-
served behavior. We will further explore these dimeric motor
proteins based on our model in a future paper �67�.

Some monomeric motor proteins such as Myosin IX are
thought to involve a diffusive step in order to achieve some

measure of processivity �35,42,68,69�. However, to maintain
this processivity monomeric motor proteins must remain in
the vicinity of a filament while in a diffusive state. Both
Nalavadi et al. �68� and Kambara et al. �69� have proposed a
mechanism. The structure of Myosin IX contains a unique
insertion in the motor domain that may harbor a second bind-
ing site. This insertion could tether the protein to its filament
while still allowing enough freedom for the protein to dif-
fuse. The motor protein then diffuses towards its next bind-
ing site before entering another powerstroke. Given the as-
sumption of this special tether in Myosin IX, the present
model provides a mechanism to efficiently guide the motor
to its next binding site by rectifying thermal fluctuations be-
fore entering a strongly bound state.

All of these single molecule constructs have been ob-
served to produce a force on the order of a few pN
�1,44–46,61,64,70�. Examining the normalized load F from
Eq. �12�, for L=5.4 nm, the approximate length of an actin
subunit, and U0=20 kBT one unit of normalized force is
about 15.8 pN. The maximum forces generated by the mono-
mers shown in Fig. 8�b� are then approximately 2.6–3.5 pN,
comparable to the forces observed experimentally.

In conclusion, we have developed a realistic model of
motor proteins which simultaneously includes the traditional
Brownian ratchet model and the powerstroke model in a
simple unified form. The properties of this model are quali-
tatively consistent with recent experimental results. Quanti-
tative investigation is currently underway. Furthermore, we
are applying the present model to dimeric processive motors
as well as muscle fiber. Although the model is developed for
the myosin superfamily, we believe it can be applied to other
molecular motors such as kinesin.
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