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Fluctuation and Dissipation of Work in a Joule Experiment

B. Cleuren,1 C. Van den Broeck,1 and R. Kawai’

"Hasselt University, B-3590 Diepenbeck, Belgium
*Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
(Received 7 November 2005; published 9 February 2006)

We elucidate the connection between various fluctuation theorems by a microcanonical version of the
Crooks relation. We derive the microscopically exact expression for the work distribution in an idealized
Joule experiment, namely, for a convex object moving at constant speed through an ideal gas. Analytic
results are compared with molecular dynamics simulations of a hard disk gas.
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Microscopic time reversibility implies, in a system at
equilibrium, the basic symmetry of detailed balance, stat-
ing that any process and its time reverse occur equally fre-
quently. In the linear regime outside equilibrium this prop-
erty entails, as Onsager has first shown, a relation between
fluctuation and dissipation, since in this regime one cannot
distinguish between the average regression following an
external perturbation or an equilibrium fluctuation. Over
the past decade, time reversibility of deterministic or sto-
chastic dynamics has been shown to imply relations be-
tween fluctuation and dissipation in systems far from equi-
librium, taking the form of a number of intriguing equal-
ities, the fluctuation theorem [1,2], the Jarzynski equality
[3], and the Crooks relation [4]. In this Letter, we want to
stress the relation between these results and discuss their
relevance by a microscopically exact study of a Joule
experiment.

Our theoretical starting point will be the derivation of a
microcanonical version of the Crooks relation. This result
has the advantage that we can consider from the onset an
isolated system, thereby dispensing with the need for con-
sidering a heat bath. In the limit of an infinitely large
system, we recover the three above-mentioned equalities.
The validity and experimental observability of these rela-
tions and their interconnection can be discussed from the
exact result for distribution of work when moving a convex
object through an ideal gas.

Consider an isolated system at time ¢t = 0 in microca-
nonical equilibrium at energy E. Its Hamiltonian depends
on a control parameter, which is varied during the time in-
terval [0, 7] following a specified protocol. An initial posi-
tion x; of the system in phase space will evolve according
to Hamiltonian dynamics into a final position x;. The cor-
responding initial and final values of the Hamiltonian are
denoted by H;(x;) and H(x,), respectively. During this
process, an amount of work W = H (x;) — H,(x;) is de-
livered to the system. Because of the microcanonical sam-
pling of the initial state from the energy shell H; = E, the
work W is a random variable with the following probability
density:
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[dx;6(H(x;) — EY6(W — H¢(xy) + H;(x;))
Q,(E)

where O(E) = [dx;6(H;(x;) — E) = exp{S;(E)/kg} is
the volume of the energy shell and S;(E) is the entropy at
the initial equilibrium state. Consider now the time-
reversed protocol. A phase point X, where the tilde refers
to velocity inversion, will evolve in time to the final phase
space position ¥;. We now average over a microcanonical
sampling in the energy shell H;(%;) = E + W. The proba-
bility distribution Py (— W) for a work —W in this time-
reversed protocol is given by

PE+W(_W)
_ Jax;8(H (%) — E — W)S(H(Xy) — Hy(%;) — W)
QHE+ W) '

Pg(W)= » (D)

2
Since the Jacobian for the transformation from dx; to dX is
one, the integrals in Egs. (1) and (2) are identical, and the
following microcanonical Crooks relation follows:
Pe(W)  QUE+W)
Ppiw(=W) Q,(E)

SHE+W)=Si(E)/ky_ 3)

In an appropriate thermodynamic limit, entailing E — oo,
the work distributions converge to functions P(W) and
P(—W), independent of the energy of the system, while
the temperature T, S/0E = 1/T, is a well-defined con-
stant (i.e., same for the initial and final microcanonical
distribution). Since AF = AE — TAS and AE = W the
internal energy difference, one recovers the canonical
Crooks relation [4]:

P(W) _ _ (AS
B(—W) exp{kg

f = epan, )

from which the Jarzynski relation {(exp(—BW)) =
exp(— BAF) follows by integration. Note that in the afore-
mentioned thermodynamic limit, entailing W/E — 0,
AF =W = T(S(E + W) — S{(E)) — —T(S¢(E) — S;(E))
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is the free energy difference between final and initial state
at same energy FE, independent of W. Note also that for a
protocol of asymptotically long duration ¢ — oo, that leads
the system into a nonequilibrium steady state, one can
write AS = fo, where o is the entropy production per
time unit, while W = AF + TAS = Tto. Equation (4)
then can be rewritten P(o)/P(—0o) ~ exp(to/kg), which
in the particular case of a time-symmetric schedule with
P = P reduces to the Evans-Cohen-Gallavotti fluctuation
theorem [1,2].

As an application of the above result, we turn to an
exactly solvable microscopic model of a Joule experiment:
an ideal gas at equilibrium in an infinitely large container
receives an amount of mechanical energy W by moving a
closed convex body through it during a time duration ¢ at a
fixed speed V along a fixed horizontal axis x (see also
Fig. 1). We will calculate explicitly the probability distri-
bution P(W) for this work. For simplicity and for compari-
son with molecular dynamics, we restrict ourselves to a
two-dimensional system, with vertical axis y. The shape of
the object is completely specified by the circumference S
and the form factor F(@), with F(6)d6 defined as the
fraction of the circumference with polar angle between
6 and 6 + d6, the angle being measured counterclockwise
from the x axis (see Ref. [5]). When a gas particle hits
the object, the amount of work AW supplied by the exter-
nal force is equal to the increase in kinetic energy of the
particle. The postcollisional speed is found in terms of the
(precollisional) speed ¥ = (v,, v,) from the conservation
of total energy and total momentum in the x direction. The
resulting work contribution is AW = —2mVsin?6(v, —
V — v, cotf). Note that this quantity is a random variable,
through its dependence on the speed of the incoming
particle and of the inclination 6 of the impact point. In
the case of an ideal gas at equilibrium (or in the limit of a
extremely dilute gas, with the mean free path of the object
much larger that its linear dimension, the so-called large
Knudsen number regime), the subsequent collisions are
independent random events. Hence the total work W(z)
after a time ¢, being the sum of uncorrelated identically
distributed AW’s, is a stochastic process with independent
increments. The time evolution of the work distribution
P(W, 1) is described by the following master equation:

FIG. 1 (color online). Snapshots for a triangular object moving
to the left (left panel) and to right (right panel). Note the void
behind the object when it moves in the direction of its arrow
(right panel).

+ o0
8,P(W,1) = f T(AW)(e~ 3" — 1)P(W, DdAW. (5)
The probability per unit time T(AW) for a change in W by
an amount AW can be calculated following the basic
methods of kinetic theory, and is given by

29 [ 0o
T(AW) = f SF(0)do er er dv,dv,pd(v,, v,)
0 —o0 —00 .

X HI(V =) - e (O — D) - &,(0)]
X 8[AW + 2mVsin*6(v, — V — v, cotd)], (6)

where H denotes the Heaviside function, V = (V,0),
¢ () is the vector orthogonal to the circumference at the
orientation #, while the delta functions picks out the in-
coming speeds that give rise to the requested work con-
tribution AW. The gas is characterized by the (uniform)
density p and the Maxwellian velocity distribution
¢(v,, v,) at temperature 7. The solution of the Master
equation is found by Fourier transform, and is most easily
expressed in terms of the following dimensionless varia-
bles:

w = BW, v= V(B—m)l/z, T Spt (7)

2 ~2Bm)"7?

being the work and speed measured in terms of the thermal
energy and speed of the gas particles, and the time in terms
of the average time between collisions. The cumulant
generating function G(g) = log(e™ /4" reads

(—igq)"

| Kn

+o00 . hd
G(q) = 10gf e P(w, T)dw = Y

o0 n=1

-7 ] 27 40F(0)v sind{(erf[(1 — 2ig)v sind] + 1)
0

X (1 — 2ig)e *ai+v’sin®0 — | — erf(ysind)}. (8)

Note that, as expected, the work distribution is invariant
under velocity inversion v — —uv for symmetric objects
F(0) = FQm — 0).

Having obtained the explicit form of the work distribu-
tion, we turn to the verification of the fluctuation-
dissipation relations. It will suffice to check the Crooks
relation which, in the present problem with AF = 0,
reads P(w) = exp(w)P(—w). The tilde here corresponds
to velocity inversion. By Fourier transformation, the
Crooks relation is equivalent with the symmetry con-
dition G(—g — i) = G(g), which is indeed verified as,
G(—q — i) — G(qg) = —27v [}™ F(6)sin6d6 = 0.  The
last equality follows from the fact that the object is closed.
The explicit result (8) allows, by expansion of G(g), to
evaluate the cumulants «,, of the random variable w:

050601-2



PRL 96, 050601 (2006)

PHYSICAL REVIEW LETTERS

week ending
10 FEBRUARY 2006

. —2ain2
4ysin2@evsind

K ={w)= TvﬁzwdﬁF(H){ NG

27 V0 (1 4+ 125in20)

21
Ky ={(dw? =87'v2f doF(6 sinzﬁ{
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k3= 16703 f dOF (6 sin3t9{
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+ 2sind(1 + 2v2sin?6)(1 + erf[v siné‘])}, (9a)
+ vsind(3 + 2v2sin?6)(1 + erf[v sin0])}, (9b)

+(3+ 120%sin20 + 4vtsin*0)(1 + erf[vsinﬁ])}, ©c)

27
K =64Tv4f dOF (6 sin40{
: aor (o) =

We next turn to two limits of particular interest. In the
quasistatic limit v — 0, expansion of G(g) in v leads to

_8qli+q) ,
—F UV

G(q) = — ]0 T 40F(0)sin?0 + 0(w?). (10)

Hence P(w) converges to §(W) in the strict quasistatic
limit [G(g) = 0]. Keeping the leading term in Eq. (10),
one concludes that P(w) is Gaussian. This level of pertur-
bation corresponds to the linear Gaussian regime around
equilibrium. The average work reduces to the familiar
Joule heating, which in original variables, reads (W) =
yV?t. Here v is the friction coefficient, the proportionality
factor in friction force versus speed: Fiicion = YV.
The expression for the friction coefficient y agrees with
a direct calculation of this quantity [5], namely y =
4Sp\JkgTm /2 [§™ F(0)sin*0d0. The second moment re-
produces an equilibrium fluctuation-dissipation relation. In
original variables: B(8W?) = 2(W). The Jarzynski equal-
ity implies more generally for a Gaussian shape of W

that the so-called fluctuation-dissipation ratio R =
—
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FIG. 2 (color online). Work distributions for a triangular object
moving to the +x (upper panel) and —x direction (lower panel).
Inset: detail of the multiple peak structure for 7 = 5.

+ vsind(15 + 20v2%sin6 + 4v*sin*6)(1 + erf[v sinﬁ])]'.

(9d)

[
B(SW?)/2((W) — W,.,) be equal to one [6]. In the present
case, the reversible work, W,., = AF, is equal to zero.
The quasistatic limit has to be compared but also con-
trasted with the long time limit 7 — co. We first note that
all the cumulants are proportional to 7, a property charac-
teristic for processes with independent increments. As a
result, one finds in the limit 7 — oo that W converges to
(W) (the law of large numbers), and more precisely that the

random variable (W — (W))/+/(6W?) converges to a nor-
mal random variable (central limit theorem). We stress
however that, while in this case the dominant part of the
probability mass is indeed rendered correctly by a
Gaussian ansatz centered around (W), the validity of the
fluctuation theorems rests on the contribution of the so-
called extreme non-Gaussian deviations, as all higher order
cumulants contribute equally (all proportional to 7) to the
Crooks relation. In particular, the average work is not
related in any obvious way to the free energy difference
nor does the fluctuation-dissipation ratio verify the near
equilibrium result R = 1. We finally turn to a comparison
of the above analytic results with those from hard disk
molecular dynamics for a dilute gas with N = 2000 disks
of diameter d = 1 and mass m = 1 (see Ref. [7] for the
detailed simulation methods.) The initial positions and
velocities of the disks are sampled from a microcanonical
ensemble (initial “temperature” 7' = 1) in a square box of
L = 1000 (i.e., initial gas density p = 0.002) with peri-
odic boundary conditions in both x and y directions.
Averages were taken over 400 000 realizations. Two simple
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FIG. 3 (color online). Crooks relation (4) for a triangular
object with velocity v = 0.2(7 = 50) and v = 2(7 = 5).
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TABLE L

Comparison between molecular dynamics simulation and theory (v7 = 10).

v K1 Ky

(e™™)

K3 Ky R

Simulation Theory Simulation Theory Simulation Theory Simulation Theory Simulation Theory Simulation

Disk 0.01 0.190 0.226 0.394 0.451 0.004 0.002 —0.009 0.005 1.04 0.998 1.01
050 13.0 12.0 38.3 357 0.353 0.385 0.191  0.229 1.48 1.49 0.31
1.00 30.1 27.8 169.0 160.0 0.466 0.509 0.234 0300 2.80 2.88 0.033
200 863 80.2 1310.0 1280.0 0.458 0.507 0225 0282 1.57 7.96 0.0043
Triangle 0.01 0.078 0.078 0.156 0.153 —-0.076 —0.111 0.012 0.018 1.004 0.981 1.00
—0.01 0.078 0.079 0.159 0.160 0.002 0.111 0.024  0.017 1.01 1.02 1.00
0.50 2.73 2.76 2.97 299  —0.566 —0.530 1.04 1.03 0.544 0542 077
—0.50 5.43 5.63 21.48 232 0.585 0.629 0371 0464 1.98 2.06 1.01
1.00 432 4.14 5.05 4.14 0.395 0.189 0965 0.737 0.583 0.500 0.53
—1.00 149 15.6 106.0 120.0 0.623 0.679 0.383 0511 3.57 3.85 1.00
2.00 6.09 6.08 10.9 11.0 0.614 0.627 0.417 0446 0.891 0903  0.11
—2.00 485 52.0 855.0 1040.0 0.568 0.646 0292 0443 8.83 10.0 1.10

shapes are considered for the object: a disk with a diameter
A =10 [F(f#) = 1/27] and an isosceles triangle with a
base length A = 10 and an apex angle ¢ = 20° [F(6) is
the sum of three delta contributions at the angles § = 7 —
¢/2,0 =3m/2and 6 = ¢ /2] cf. Fig. 1. For the disk, we
have by symmetry that P = P. The latter distributions can,
however, be very different for the triangle. An illustrative
comparison between analytical and simulation results is
shown in Figs. 1-3 and Table I for a wide range of values
of v and 7. Overall, qualitative agreement is observed. In
particular, the progressive change in the general shape of
the probability distribution P(w) from its quasistatic
Gaussian shape to a very complicated multipeaked distri-
bution for the triangle is well reproduced by the present
theory. The comparison of moments given in Table I con-
firms this agreement. In the linear response regime
(R ~ 1), the molecular dynamics simulation reproduces
quite well the Jarzynski equality, meaning that such simu-
lations could be used as an accurate estimate of the free
energy difference (which happens to be zero here).
However, as the velocity increases, the Jarzynski equality
is not reproduced because its validity rests on the contri-
bution of extremely rare events. Note, however, the follow-
ing exception: the triangular object moving to the left
satisfies the Jarzynski equality surprisingly well even
when its velocity is greater than the mean velocity of the
gas particles. The intuitive explanation is that negative
work, corresponding to particles hitting the triangle while
it moves away from them, can be more easily realized by
the collision on the elongated side of the triangle (see the
left panel of Fig. 1). This observation is also supported at
the level of the Crooks relation cf. Fig. 3, and is in agree-
ment with a general argument, see [8], that the Jarzynksi
equality is verified more easily when operating at higher
dissipation cf. Table I.

We conclude with a few relevant comments. Only in the
quasistatic limit (including the linear regime around equi-
librium) is the convergence of P(W) to a delta function

and to a Gaussian strong enough to be allowed to inter-
change this limit with the Jarzynski average. One con-
cludes that (W) converges to AF and the fluctuation-
dissipation ratio R converges to 1. In the limit 7— oo,
W, being the sum of independent increments, both the
law of large numbers and central limit theorem apply,
but the Jarzynski average is dominated by the extreme
non-Gaussian fluctuations. The present study also illus-
trates that one has to go far out of equilibrium, in case
the speed of the object comparable to the speed of the
particles, to see significant deviations from linear re-
sponse theory. Furthermore, one will, in the latter case
(R significantly different from 1), typically observe devia-
tions from the Jarzynski equality because it becomes prac-
tically impossible to sample extremely rare events. We
however found an interesting exception to this rule: for
the motion of a highly asymmetric object, the negative
work contributions of the not-so-rare collisions on its
elongated tail allow the verification of the Jarzynski
equality outside the regime of linear response. Concomi-
tantly, the Jarzynski equality can in such cases be used to
estimate free energy differences from far from equilibrium
measurements.
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