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We show, through a refinement of the work theorem, that the average dissipation, upon perturbing a
Hamiltonian system arbitrarily far out of equilibrium in a transition between two canonical equilibrium
states, is exactly given by hWdissi � hWi ��F � kTD�� k e�� � kThln��=e��i, where � and e� are the
phase-space density of the system measured at the same intermediate but otherwise arbitrary point in time,
for the forward and backward process. D�� k e�� is the relative entropy of � versus e�. This result also
implies general inequalities, which are significantly more accurate than the second law and include, as a
special case, the celebrated Landauer principle on the dissipation involved in irreversible computations.
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Since the pioneering work of Boltzmann, the search for
an exact microscopic expression of dissipation has been at
the heart of (nonequilibrium) statistical mechanics. In this
Letter, we derive such an expression from first principles,
through a refinement of the recently discovered work
theorem by Jarzynski and Crooks [1].

The second law of thermodynamics stipulates that the
average mechanical work hWi needed to move a system in
contact with a heat bath at temperature T, from one equi-
librium state A into another equilibrium state B, is at least
equal to the free energy difference between these states:
hWi � �F � FB � FA. The equality is reached for a qua-
sistatic process. The extra work hWi ��F is often referred
to as the dissipated work. Contrary to the reversible work,
the dissipated work depends on how the transition between
the states is realized. Typically, one or more external
control parameters are changed in time, following a spe-
cific protocol, between initial and final values. The dissi-
pated work will depend on this protocol, which can in
principle bring the system arbitrarily far out of equilibrium.
Amazingly, there exists an exact, simple, and compact
microscopic expression for this dissipation. The key is to
consider the protocol and its time-reversed version.
We will refer with a superscript tilde to all the quan-
tities measured in the time-reversed protocol. The central
result is then the following: hWdissi � hWi ��F �
kTD��jj~�� � kThln��=e��i, where � and e� are the phase-
space densities of the system measured at the same inter-
mediate but otherwise arbitrary point in time, in the for-
ward and backward protocol, respectively. D�� k e�� is the
Kullback-Leibler distance [2], also called relative entropy,
of � versus e�.

The derivation is similar in spirit to that of the Jarzynski
and Crooks equalities [1]. Consider a Hamiltonian
H�q; p;��, where �q; p� represents the set of position and
momentum variables of the system under consideration
and � is a control parameter which is varied from an initial
value �A to a final value �B, according to a protocol ��t�

controlled by an external agent. The system is initially
assumed to be in canonical equilibrium at temperature T
at the value �A of the control parameter and, along the
protocol, is completely isolated; i.e., no energy is ex-
changed other than the work W performed by the external
agent on the system. In the time-reversed scenario, the
system is initially at canonical equilibrium at the same
temperature T, but at the value �B of the control parameter,
which is now changed according to the exact time-reversed
protocol.

We first set out to calculate the work W�q; p; t� done
along the whole process, for the specific phase trajectory
that passes through the phase point �q; p� at time t. Since
the dynamics are deterministic, there is precisely one such
trajectory. Let us call �q0; p0� and �q1; p1� the correspond-
ing initial and final phase points uniquely determined by
�q; p�. Note also that there is a one-to-one correspondence
with the time-reversed trajectory in the time-reversed pro-
tocol which, starting from �q1;�p1�, goes through �q;�p�
and, finally, into �q0;�p0�, cf. Fig. 1. For simplicity of
notation, we will use the forward time to express times in
both forward and backward scenarios. By conservation of
total energy, one has that

 W�q; p; t� � H�q1; p1;�B� �H�q0; p0;�A�; (1)

where qi � qi�q; p� and pi � pi�q; p� for i � 0; 1.
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FIG. 1. Space-time coordinates for the forward and backward
trajectories.
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Now, since the phase-space density is conserved along
any Hamiltonian trajectory, one has, in both forward and
backward process

 ��q; p; t� � ��q0; p0; t0� �
exp���H�q0; p0;�A��

ZA
; (2)

 e��q;�p; t� � e��q1;�p1; t1�

�
exp���H�q1;�p1;�B��

ZB
;

where ZA and ZB are partition functions at the equilibrium
states A and B, respectively. These expressions allow us to
eliminate the Hamiltonian (which is supposed to be even in
the momenta, or more precisely time reversible) at initial
and final times in favor of the phase-space density at any
intermediate time point. Equation (1), yields the following
generalized Crooks relation:

 expf��W�q; p; t� ��F�g �
��q; p; t�e��q;�p; t� ; (3)

where �F � �kT�lnZB � lnZA� is the free energy differ-
ence between the final and initial equilibrium states. If we
now rewrite Eq. (3) as follows:

 W�q; p; t� � �F � kT ln
��q; p; t�e��q;�p; t� ; (4)

the average dissipative work reads

 hWi ��F � kT
Z
dqdp��q; p; t� ln

��q; p; t�e��q;�p; t�
� kTD���q; p; t� k e��q;�p; t��: (5)

We conclude that the dissipated work is fully revealed by
the phase-space density of forward and backward pro-
cesses at any intermediate time of the experiment. It is
particularly interesting to note that this dissipation, cf. the
right-hand side of Eq. (5), takes the form of the relative
entropy (Kullback-Leibler distance [2]) D�� k e�� �R
dqdp� ln��=e�� between the forward and backward

probability distributions � and ~�. This simple result calls
for a number of more specific comments. First, since a
relative entropy is strictly non-negative [2], we conclude
that the dissipation cannot be negative, in agreement with
the second law. Second, the dissipation results from the
asymmetry between the forward and backward protocols:
it is zero only when ��q; p; t� � e��q;�p; t�. In fact,
Stein’s lemma [2] relatesD�� k e�� directly to the difficulty
of statistically distinguishing forward versus backward
trajectories. This is consistent with the general observation
that dissipation is the result of the breaking of detailed
balance [3]. The above expression is also consistent with a
proposal, linking the time asymmetry of the Kolmogorov-
Sinai entropy to the entropy production of the dynamical
system [4]. Third, the total dissipation, cf. the left-hand

side of Eq. (5), is obviously a constant, independent of
time. Yet the densities in the right-hand side of Eq. (5) can
be evaluated at any intermediate time t. This time inde-
pendence follows from the observation that the relative
entropy of densities obeying the same Liouville equation,
is constant in time [5]. Fourth, the evaluation of the dis-
sipated work in general requires full knowledge of the
phase-space density, even though only at one particular
instant of time. That such detailed information may be
needed is consistent with the generality of the result, which
is valid no matter how far the system is driven out of
equilibrium. However, one can get away from this appar-
ently stringent requirement, by invoking the chain rule for
relative entropy [2]. According to this rule, the relative
entropy decreases upon coarse graining. The equality
Eq. (5) is then replaced by an inequality. It is instructive
to give a direct derivation of this result.

Consider a partition of the entire phase space, consisting
of K nonoverlapping subsets �j; �j � 1; . . . ; K�. We intro-
duce the corresponding coarse-grained phase densities

 �j �
Z
�j
��q; p; t�dqdp; e�j � Z

e�j e��q;�p; t�dqdp;
(6)

where the e�j is identical to �j, apart from the inversion of
all momenta. By integration of Eq. (3) over the set �j, we
obtain the following detailed Jarzynski equality:

 he��Wij �

R
�j
��q; p; t�e��W�q;p;t�dqdp

�j
�
e�j
�j
e���F:

(7)

By Jensen’s inequality, Eq. (7) implies a second-law-like
inequality:

 hWij � �F� kT ln
��je�j

�
� �h eWij; (8)

where we have included, for later reference, the inequality
that arises by considering the backward process. Finally, by
performing an average over the different subsets, one finds
 

hWi �
X
j

�jhWij � �F� kTD��j k e�j�; (9a)

h eWi �X
j

e�jh eWij � ��F� kTD�e�j k �j�; (9b)

where the discrete version of relative entropy is defined by
D��j k e�j� � P

j�j ln��j=e�j�.
We conclude that, when full information of the phase

density is not available, a coarse-grained relative entropy
still provides a lower bound for the dissipative work, sig-
nificantly improving the classical one given by the second
law. How well this bound approaches the total dissipation
will depend on how far the process is from the quasistatic
regime. In particular, in the latter case, any partition will
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do, and the relative entropy is always identically zero.
More interestingly, one expects that a coarse-grained par-
tition will suffice in case of separation of time scale be-
tween fast and slow variables. Indeed, in this case and for a
protocol on the slow time scale, the fast variables will be
essentially at equilibrium and all the dissipation is captured
in the time-asymmetry contained in the slow variables. We
note, however, that in this reduced set of variables, trajec-
tories can, unlike in full phase space, cross each other. A
more detailed analysis reveals that full information is then
not captured by measurement at a single time, but should in
general be carried out at all times, in agreement with, e.g.,
the entropy production of Markovian processes [3,4,6].

To illustrate the power and usefulness of our results, we
turn to a number of specific examples. We first consider the
quenching of a system described by the Hamiltonian
H�x;��, in contact with a heat bath at temperature T.
The equilibrium probability distribution to observe the
state x is given by a Boltzmann distribution p�x;�� 	
exp���H�x;���=Z�, with Z� the normalization factor
(partition function). We now perturb this equilibrium by
the following irreversible quench: the control parameter is
changed instantaneously from the value � to the value �0 at
a specific time and the experiment terminates at any later
time. In the backward process, we start from equilibrium at
�0 and quench back to �. Since the state x does not change
during the instantaneous quench, the work in the forward
process is

 hWi �
Z

dx�H�x;�0� �H�x;���p�x;��: (10)

Now, consider a partition, infinitely fine in the position
coordinates (disregarding all the other degrees of freedom,
in particular, those of the heat bath) and measure the
coarse-grained distribution p�x; t� at the time of quench.
We note that the distributions prior to the quench are the
equilibrium distribution from which one started, i.e.,
p�x;�� and p�x;�0� for forward and backward scenarios,
respectively. Turning to Eq. (8), the role of �j and e�j are
thus played by p�x;�� and p�x;�0�; hence

 hWi � �F� kT
Z

dxp�x;�� ln
p�x;��
p�x;�0�

: (11)

Using the Boltzmann probability distributions together
with �F � �kT ln�Z�0=Z��, a comparison with Eq. (10)
reveals that the equality sign holds in Eq. (11). We con-
clude that in this case the coarse-grained partition captures
the full dissipation.

Turning to a more complicated situation, we consider an
overdamped Brownian particle in contact with a heat bath
at temperature T, moving in a harmonic potential whose
spring constant varies from � to �0 during a finite time �.
For �! 0, one recovers the quenching experiment de-
scribed above with hWi given by Eq. (10) (with a harmonic
Hamiltonian). For �! 1, one approaches the quasistatic

limit with hWi � �F. In Fig. 2 we compare the dissipative
work hWi ��F, obtained from Langevin simulations,
with the relative entropy measured at the middle of the
transition with a fine partition (�x � 0:1) and a coarse
partition (�x � 1:0). The relative entropy is always below
the dissipative work, consistent with Eq. (9a). For the fine
partition the relative entropy coincides with the dissipative
work as � approaches the quenched limit, in agreement
with Eq. (11). Note that the refinement of the partition in
estimating the dissipation is most effective close to the
quenched limit.

In our final illustration, we show that Eqs. (9) include as
a special case the celebrated Landauer principle on the
minimal dissipation of irreversible computations. We con-
sider a Brownian computer [7–9], consisting of a one-
dimensional overdamped Brownian particle at temperature
T in a time-dependent potential varied by an external agent
according to a given cyclic protocol shown in Fig. 3. Since
it involves spontaneous symmetry breaking followed by
forced symmetry breaking, this process is analogous to the
Szilard engine [10,11], whereas the reverse, starting from
b, is analogous to the Landauer’s restore-to-zero process
[7,8,12].

The coarse resolution measurement is made at the stage
b of the forward cycle by partitioning position space into
two sets, �R � fx:x � 0g and �L � fx:x < 0g (See Fig. 3).
In the forward process, we have by symmetry that pR �
pL � 1=2. In the backward process the large majority of
trajectories will be forced by the external bias towards the
location of the cell �R at stage d. However, since the height
of the barrier is finite, trajectories can still thermally cross
over to �L before reaching the filtering stage b. Therefore,
the probabilities epR and epL, while being close to 1 and 0
for strong forcing, will otherwise depend on the applied
force, barrier height, temperature, and processing speed.
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FIG. 2 (color online). Dissipation of Brownian particles in a
harmonic potential with spring constant varying from � � 2 to
�0 � 1 during a time interval �. The solid line is dissipative work
directly obtained from simulation. Dashed and dotted lines
indicate the lower bound of the dissipative work estimated
from the relative entropy.
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In this example, we focus on the validity of Eq. (8), i.e.,
the average work for each macroscopic trajectory, R or L.
Since the process is periodic, �F � 0 and all work is
dissipative. For strong forcing, epR � 1, Eq. (8) reads

 hWiR � �kT ln2 � �h eWiR�epR � 1�: (12)

This expression includes Landauer’s principle in the
case of the backward process, namely, that the erasure of
1 bit of information must be accompanied by the dissipa-
tion of an energy kT ln2. For the Szilard engine, i.e., the
forward process, one recovers the apparent violation of the
second law by R trajectories when the equal sign in
Eq. (12) holds: hWiR � �kT ln2. Concomitantly, along
the L path, we have ~pL ! 0, or, more precisely, ~pL 

exp��V=kT�, V being the height of the barrier, and the
lower bound given by Eq. (9a) is, approximately, hWiL >
V. The L trajectories correspond to a ‘‘wrong’’ measure-
ment in the Szilard engine [10], and they dissipate an
energy significantly bigger than the energy kT ln2 ex-
tracted from the thermal bath in the R trajectories.
Consequently, the overall dissipation for the engine is
positive, in accordance with the second law.

In Fig. 3 we show the results of numerical simulations of
the corresponding overdamped Langevin equation.
Average work performed by the Brownian particles resid-
ing in the right well at the stage b in the forward and
backward processes is plotted for different values of the
processing time �. The bound using pR and epR measured
directly in the simulation is also plotted. The bound is

always between hWiR and �h eWiR in agreement with
Eq. (8). Note that the Landauer principle, contained in
(12), breaks down in the quasistatic limit �! 1, since
the Brownian particle equilibrates by crossing the barrier.
In this process, the stored information is lost, epR ! 1=2,
and the (dissipated) work goes to zero. Nevertheless, the
inequality (8) is always satisfied.

As the Jarzynksi equality itself has generated a lot of
debate, a critical discussion of the above theory is in place.
The term dissipation is usually associated to entropy pro-
duction. To make this connection, we note that the system
is not at equilibrium at the final stage of the (forward)
experiment. We can, however, reconnect it to a heat reser-
voir and let it relax to its canonical equilibrium state for
� � �B and temperature T. In doing so, it will exchange
the dissipated work under the form of heat with the bath,
resulting in an entropy production �S � khln��=e��i. One
could ask whether the disconnection or reconnection of the
system with the bath adds significant terms to the work
and/or the free energy. Apart from the answers given to
these issues in the context of the Jarzynski equality itself
[13], we are concerned here with the average total work,
which is much larger than these energies for large systems
and long enough operation times. Finally, the above deri-
vation relies on a continuous transformation of the
Hamiltonian, excluding, for example, free expansion.
This limitation reflects the need for considering the time-
reversed process.
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FIG. 3 (color online). Top: Cyclic variation of a model po-
tential. The arrows indicate the forward protocol corresponding
to the Szilard engine. The backward process is a model for
recording and erasing information. Bottom: Partitioned average
work as a function of processing time �: hWiR (solid line) and
�h eWiR (dashed line). The bound (8) using the coarse-grained
distribution is shown by the dotted line.

PRL 98, 080602 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 FEBRUARY 2007

080602-4


