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Abstract. We present an exact relationship between the entropy production
and the distinguishability of a process from its time-reverse, quantified by
the relative entropy between forward and backward states. The relationship is
shown to remain valid for a wide family of initial conditions, such as canonical,
constrained canonical, multi-canonical and grand canonical distributions, as well
as both for classical and quantum systems.
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1. Introduction

Providing a microscopic expression for the entropy production has been one of the grand
aims of statistical mechanics, going back to the seminal work of Boltzmann. However, both
the range of validity of the second law and of its proposed derivations have, from the very
beginning, generated discussion and controversy. The recent discovery of the fluctuation and
work theorems [1]–[6] has re-invigorated the debate. These intriguing results provide equalities
involving the probability distributions for work or entropy production, and appear to be of
specific interest for the study of small systems [7]–[9]. With respect to the average value of
work or entropy production, they are consistent with the second law, but provide no additional
information beyond it. In a recent work [10] (see also [11]), we have derived, from first
principles, the exact value of the average dissipated work 〈W 〉diss upon bringing a system from
one canonical equilibrium state at a temperature T into another one at the same temperature.
The dissipated work is defined as the extra amount of work, on top of the difference of free
energy 1F that is required for making this transition. Its expression reads

〈W 〉diss = 〈W 〉 −1F = kT

〈
ln

ρ

ρ̃

〉
. (1)

Here k is the Boltzmann constant and ρ = ρ(0; t) is the probability density in phase space
to observe the system to be in a micro-state 0 = (q, p) specified by a set of positions q and
momenta p at an intermediate time t . The averaging brackets denote an average with respect
to the density ρ. The other density ρ̃ = ρ̃(0̃; t) represents the distribution in the time-reversed
process observed at a corresponding time-reversed phase point 0̃ = (q, −p) at the same time as
the forward process. As an example, consider compression and expansion of a gas in a cylinder,
a forward experiment corresponding to the expansion of a gas by moving a piston from an initial
to a final position; the backward experiment corresponds to performing the motion of the piston
in the time-reversed manner. The statistics of the micro-states are taken at the same intermediate
position of the piston. Both forward and backward experiments are assumed to start in canonical
equilibrium at the same temperature.

The dissipated work (1) can also be written in terms of a well known and powerful
concept from information theory, the relative entropy or Kullback–Leibler distance between
two probability densities [12]:

〈W 〉diss = kT D(ρ‖ρ̃), (2)

where

D(ρ‖ρ̃) =

∫
d0ρ(0, t) ln

ρ(0, t)

ρ̃(0̃, t)
(3)

=

∫
d0ρ(0, t) ln ρ(0, t) −

∫
d0ρ(0, t) ln ρ̃(0̃, t). (4)

is the relative entropy between ρ and ρ̃. Written in this way, the result reveals its deep
meaning, linking the dissipation directly to the irreversibility of the underlying experiment.
Indeed the relative entropy between probability densities is expressing the difficulty of
distinguishing samplings from these densities [12]. In the present case, it measures the difficulty
of distinguishing whether observed data of the micro-state correspond to those from a forward
or backward experiment. Therefore, the relative entropy (4) can be considered as a quantitative
measure of the arrow of time [13]–[25].
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At the end of the forward process, the system is generally speaking in a non-equilibrium
state, for which the entropy is not well defined. Hence, to make the connection with the
entropy production, we introduce an idealized heat bath at temperature T , with which the
system is put in contact at the end of the forward experiment, without extra work. The system
thus relaxes back to canonical equilibrium, which is also the starting state of the backward
process. During the relaxation, the system transfers an average amount of heat Q to the bath.
We can now evaluate the total entropy production. On the one hand, the entropy change
in the bath, assuming it operates quasi-statically, is given by Q/T . On the other hand, the
entropy change between the canonical equilibrium state of initial and final states in the system
reads: (1U − 1F)/T = (〈W 〉 − Q − 1F)/T . Here, we used the relation F = U − T S, where
U = 〈H〉 is the equilibrium internal energy, calculated with respect to the prevailing canonical
distribution and S the thermodynamic entropy of the system. The total entropy production
(in the total device, system plus heat bath) in the forward process, 1S, is thus equal to the
dissipated 〈W 〉diss divided by temperature, hence

1S = k

〈
ln

ρ

ρ̃

〉
= k D(ρ‖ρ̃). (5)

This result goes right to the core of the second law, as it provides an exact explicit microscopic
expression for the total entropy production in the considered scenario.

This scenario is very specific: the system is initially at canonical equilibrium, and
disconnected from any heat bath during the perturbation [10]. These assumptions greatly
simplify the derivation, but also generate the misleading impression that they are essential. The
aim of this paper is to further clarify the status of the basic results (5), and to show that it has a
wider range of validity.

Our discussion will be based on a general and exact mathematical identity for the relative
entropy, derived in section 2, which is valid for arbitrary initial conditions in the forward process
and the backward process. In section 3, this identity is applied to different scenarios, including
various types of initial equilibrium states, such as grand canonical ensembles, constrained
equilibrium states and multi-canonical distributions at different temperatures. In each of these
cases, the entropy production is (aside a factor k) equal to the relative entropy of the phase
space density between the forward and the backward states, provided some idealized relaxation
process is assumed at the end of the forward process. In section 4, we present the quantum
analogue of the above result, expressed in terms of the quantum relative entropy [26]–[28].

2. General formulation

We consider a system described by the Hamiltonian H(0; λ), with λ a control parameter that
describes the energy exchange with an external device. For simplicity, we will assume that the
Hamiltonian is an even function with respect to inversion of momenta. As is well known, the
probability density in phase space ρ(0, t) to observe the system in a specific micro-state 0 at
time t obeys the Liouville equation:

∂ρ(0, t)

∂t
= Lρ(0, t). (6)

In a classical system, the Liouville operator L is given by Poisson brackets: Lρ = {H, ρ} =

∂q H∂pρ − ∂p H∂qρ (summation convention over all positions and momenta is assumed).
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An important implication of the Liouville theorem is that the Shannon entropy associated
with ρ, namely

−

∫
d0ρ(0, t) ln ρ(0, t) (7)

is constant in time, as can be easily proven by applying the Liouville equation followed
by partial integration [16]. This appears to be in contradiction with the second law of
thermodynamics, or at least precludes the use of this expression as a microscopic definition for
the entropy. In fact, we share the general opinion that entropy is not defined at the microscopic
level except when the system is at equilibrium. The Shannon entropy (7) reduces to the proper
thermodynamic entropy only for systems at equilibrium.

An essential remark for the further discussion is that the above property remains valid for
a smooth time-dependent Hamiltonian or Liouvillian. We will henceforth focus on scenarios
where the control parameter λ is changed from an initial value λA to a final value λB, according
to a specific protocol λ(t), t ∈ [0, τ ]. We also consider a time-reversed experiment, starting at
the final value λB of the control parameter, and performing the time-reversed perturbation. The
quantities appearing in this setting will be indicated by a superscript tilde. We will always use
the forward time t to designate time in both forward and backward experiments, keeping in
mind that the corresponding real time in the backward experiment is equal to τ − t . The initial
conditions for both forward and backward experiments are for the moment left unspecified. The
above set-up is reminiscent of the one introduced by Jarzynski in his derivation of the Jarzynski
equality [4], although the scope of our derivation extends, as we will see, well beyond the
validity of the Jarzynski equality.

The key observation is that the phase space density of backward evolution with reversed
momenta, namely ρ̃(0̃, t), obeys the same Liouville equation (6) with respect to the forward
time variable t :

∂ρ̃(0̃, t)

∂t
= Lρ̃(0̃, t). (8)

The transition from equation (6) to (8) is based on micro-reversibility: trajectories retrace
their steps upon reversing the schedule of λ and inverting momenta. Mathematically, the result
follows easily by writing the Liouville equation for ρ̃ in its proper time τ − t . When switching
to the forward time t , the negative sign, due to the time derivative in the lhs of the Liouville
equation, is cancelled by another one in the rhs, appearing upon inverting the momenta. As
a particular example, for the case of a time-independent Hamiltonian, the above statement
reduces to the fact that ρ(0, t) and ρ(0̃, τ − t), obey the same Liouville equation, when the
time-derivative is with respect to t .

We can now invoke a remarkable property for probability distributions that obey the same
Liouville equation: their relative entropy is invariant in time [16, 29]. In particular, the following
quantity ∫

d0ρ(0, t) ln ρ̃(0̃, t) (9)

is time-invariant, as can again be easily verified by applying Liouville’s equation followed by
partial integration.

The invariance in time of (7) and (9) now allows us to rewrite the quantity of central
interest, namely the relative entropy (4), as follows. Since each term in the rhs of equation (4)
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is invariant under time translation, we can shift time in the first term back to t = 0, and in the
second term forward to t = τ :

D
(
ρ(0, t)‖ρ̃(0̃, t)

)
=

∫
d0ρ(0, 0) ln ρ(0, 0) −

∫
d0ρ(0, τ) ln ρ̃(0̃, τ ). (10)

We stress again that this is an exact result, valid for any initial conditions for ρ and ρ̃. For
specific choices of these states, we proceed to make the connection with the entropy production
in a variety of scenarios. Note also that the above result will only be useful if the support of ρ̃

includes the support of ρ, i.e. there are no phase points for which ρ̃ = 0 and ρ 6= 0. Otherwise
D(ρ||ρ̃) diverges.

3. Explicit entropy production in different scenarios

In this section, we apply equation (10) for specific choices of equilibrium initial conditions
ρ(0, 0) and ρ̃(0̃, τ ) in forward and backward processes, respectively. We will see that in all
the considered cases, the resulting relative entropy is equal to the entropy production along
the forward process. If ρ(0, 0) is an equilibrium distribution or the product of independent
equilibrium distributions, Shannon entropy is equal to the thermodynamic entropy:

S(0) = −k
∫

d0ρ(0, 0) ln ρ(0, 0). (11)

This equality holds for different equilibrium ensembles, such as canonical and grand canonical.
With this choice of initial condition for the forward process the first term in equation (10) is
minus the initial equilibrium entropy. In the following, we will prove that the second term can
be identified with the final entropy.

As mentioned in previous sections, in this paper we only consider as meaningful the
entropy of equilibrium states. On the other hand, after the forward process is completed at
time τ , the resulting state ρ(0, τ) is not at equilibrium. In order to have a well-defined
expression for the entropy production, we need some relaxation mechanism to equilibrium after
the forward process has been completed. The function of this mechanism is twofold: it allows
us to have a meaningful definition of entropy production, and also drives the system from the
non-equilibrium final state ρ(0, τ) to the equilibrium one ρ̃(0, τ ), which is the initial condition
for the backward process5.

Note that the relaxation from ρ(0, τ) to ρ̃(0, τ ) in an isolated system is incompatible
with the Liouville theorem. Our derivation does not touch on this old and unresolved
problem. Instead, for the relaxation to ρ̃(0, τ ), we invoke the presence of one or several ideal
(super)baths, to which the system is weakly coupled. This relaxation can, in principle, be
performed without any extra energy input, since coupling the superbath with just one degree
of freedom of the system is enough to induce thermalization [30]. Moreover, if this degree of
freedom is chosen to have zero mean (for instance, one of the momenta of the bath), then the
average work done by switching on the coupling is strictly zero. Finally, we will assume that
the entropy production in the superbaths, due to exchange of energy and/or particles with the
system, is given by the standard expressions from statistical mechanics and thermodynamics.

5 This relaxation will take some time τrel. However, recall that our time variable t in ρ̃(0, t) denotes the stage of the
process, using the forward one as reference, rather than the real physical time tphys. In a complete forward–backward
cycle, the time variable in ρ̃(0, t) will be t = 2τ + τrel − tphys, so ρ̃(0, τ ) is the state of the system at tphys = τ + τrel.
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Note that such or similar assumptions also appear in the various derivations of both fluctuation
and work theorems, and in the study of non-equilibrium steady states. They are also intrinsically
present in the formulations via mesoscopic stochastic descriptions.

3.1. Canonical distributions

In our first example, we start the forward process with a canonical distribution at temperature T
and, after the process is completed at time τ , we connect the system with a thermal bath at
a different temperature T ′. The initial condition for the backward process is in this case a
canonical distribution at temperature T ′:

ρ(0, 0) =
e−β H(0;λA)

Z(T, λA)
, (12)

ρ̃(0, τ ) =
e−β ′ H(0;λB)

Z(T ′, λB)
, (13)

where Z(T, λ) =
∫

d0e−β H(0,λ) being the partition function. Recalling that we consider
Hamiltonians even functions of the momenta, we obtain from equations (10) and (11)

k D(ρ||ρ̃) = −S(0) +
〈H〉τ − F(T ′, λB)

T ′
, (14)

where averages 〈·〉t are taken over the forward time density ρ(0, τ) and

F(T, λ) = −kT ln Z(T, λ) (15)

is the usual equilibrium free energy. After relaxation to equilibrium with the bath at
temperature T ′, the average energy of the system becomes 〈H〉eq,τ , which is only a function
of λB and T ′. In the relaxation, the system transfers an amount of energy to the thermal bath
Q = 〈H〉τ − 〈H〉eq,τ . Therefore

k D(ρ||ρ̃) = − S(0) +
〈H〉eq,τ − F(T ′, λB)

T ′
+

Q

T ′

= − S(0) + S(τ ) + 1Sbath = 1S, (16)

where S(τ ) is the final entropy of the system (in equilibrium at temperature T ′) and 1Sbath is
the increase of the entropy in the bath.

Therefore, the relative entropy is equal to the total entropy production along the forward
process plus the final relaxation: 1S = k D(ρ||ρ̃). Note that all entropies have been calculated
only for equilibrium states. In fact, this example illustrates that it makes no sense to talk about
the entropy produced along the process if one does not specify the final equilibrium state and
how it is reached. In our case, the total entropy production depends on the final temperature T ′.
Hence, the same forward process λ(t) can have different entropy production depending on the
final temperature T ′.

3.2. General equilibrium distribution

The above example can be easily generalized to an arbitrary equilibrium distribution defined
over some conserved quantities Ai(0) (i = 1, . . . , r ), with conjugated variables αi = T ∂S/∂ Ai

and the corresponding thermodynamic potential U(T, Eα) = 〈H〉 +
∑

i αi〈Ai〉 − T S. After the
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forward process, the system is coupled to a reservoir characterized by temperature T ′ and certain
values α′

i of the conjugated variables. The initial condition for the backward process reads

ρ̃(0, τ ) = exp

[
−β ′

(
H(0, λB) +

r∑
i=1

α′

i Ai(0) −U(T ′, Eα′)

)]
. (17)

Hence

−k
∫

d0ρ(0, τ) ln ρ̃(0, τ ) =
〈H〉τ +

∑r
i=1 α′

i〈Ai〉τ −U(T ′, Eα′)

T ′
. (18)

During relaxation, there is a transfer of energy and of the conserved quantities Ai from the
system to the reservoir given, respectively, by Q = 〈H〉τ − 〈H〉eq,τ and 1Ai = 〈Ai〉τ − 〈Ai〉eq,τ .
The final entropy of the system is

S(τ ) =
〈H〉eq,τ +

∑r
i=1 α′

i〈Ai(0)〉eq,τ −U(T ′, Eα′)

T ′
(19)

and the entropy increase in the reservoir is 1Sbath = (Q +
∑

i α′

i1Ai)/T ′. The cross term (18) is
then equal to S(τ ) + 1Sbath. If, along the forward process, the external agent moving λ(t) does
not undergo any change of entropy, we again find equation (5): 1S = k D(ρ||ρ̃).

Note that the cross entropy (18) contains precisely the non-equilibrium average values,
〈H〉τ and 〈Ai(0)〉τ , yielding the correct expression for the final equilibrium entropy of the
system S(τ ) plus the entropy increase in the bath 1Sbath.

As a particular case, consider A = N the number of particles. Then, −α = µ, the chemical
potential. In equilibrium, the thermodynamic potential

U(T, µ) = 〈H〉eq − µ〈N 〉eq − T S (20)

is the so-called grand canonical potential, where the averages 〈·〉eq are taken with respect to the
grand canonical ensemble

ρ(0, N ) = e−β[H(0,λ)−µN−U(T,µ)]. (21)

We now choose as initial condition for the forward process a grand canonical ensemble
characterized by temperature T and chemical potential µ. We proceed with the forward process
by changing λ(t) (N remaining constant to avoid change of entropy in the external agent moving
λ). After the process is completed we connect the system with a particle and energy reservoir at
temperature T ′ and chemical potential µ′. In the relaxation, there will be an exchange of energy
and particles between the system and the bath, as explained above. Finally, the total entropy
production along the forward process plus the relaxation is given by the relative entropy between
forward and backward states, equation (5).

3.3. Multicanonical distribution

The above examples can be extended to the product of several equilibrium states. We consider
the special case where systems at different temperatures are brought into contact with each
other. This case is of particular interest since thermal exchange is another standard example of
entropy production. Also, the present scenario produces in the appropriate limit, e.g., the limit
of infinitely large thermal reservoirs, a stationary non-equilibrium state. We will thus show that
our formula of entropy production as a relative phase space entropy also applies in this example
of a non-equilibrium steady state.
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Consider n systems i = 1, . . . , n, at the initial time decoupled, and each one at canonical
equilibrium at temperature Ti :

ρ(0, 0) =

n∏
i=1

e−βi Hi (0i ,λA)

Z i(Ti , λA)
. (22)

We will assume a similar initial state for the backward process, decoupled systems but with
arbitrary temperatures T ′

i , i.e.

ρ̃(0, τ ) =

n∏
i=1

e−β ′

i Hi (0i ,λB)

Z i(T ′

i , λB)
. (23)

While the systems are decoupled both at initial and final times, thermal contact with each other
can be established during intermediate stages of the process by an appropriate choice of the
time-dependent Hamiltonian. One possibility is adding to the original decoupled Hamiltonians
a coupling term inducing energy exchange and multiplied by the control parameter λ(t), set
equal to zero at initial and final times. Equation (10) gives us the following result:

k D(ρ‖ρ̃) =

n∑
i=1

[
−

〈Hi(λA)〉0

Ti
− k ln Z i(Ti , λA)

]

+
n∑

i=1

[
〈Hi(λB)〉τ

T ′

i

+ k ln Z i(T ′, λB)

]
. (24)

As in our previous examples, each subsystem transfers to their corresponding thermal baths
an energy Qi = 〈Hi(λB)〉τ − 〈Hi(λB)〉eq,τ , 〈Hi(λB)〉eq,τ being the equilibrium energy of each
subsystem after the relaxation to ρ̃(0, τ ). Therefore

k D(ρ‖ρ̃) =

n∑
i=1

[
−

〈Hi(λA)〉0 − F(Ti , λA)

Ti
+

〈Hi(λB)〉eq,τ − F(T ′

i , λB) + Qi

T ′

i

]

=

n∑
i=1

[
−Si(0) + Si(τ ) + 1Sbath,i

]
= 1S. (25)

Hence, the total entropy produced in the entire forward process (plus relaxation) is again given
by the relative entropy, equation (5). Similar arguments can be applied to multi-grand canonical
distributions, allowing chemical reactions and exchange of particles between the system and the
final reservoirs.

3.4. Constrained canonical distributions and filters

Finally, we now apply the general result, equation (10), to the case of canonical states restricted
to subdomains of the phase space. One can imagine two scenarios leading to such restricted
initial states, namely: (a) the system is subject to constraints in the initial and/or final states,
or (b) one selects (or restricts the observation to) that specific set of trajectories that lie within
a prescribed subdomain of phase space; this selection can, in principle, be performed at any
intermediate time of the process.
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In both cases, the relevant initial condition for the forward process can be written as
follows:

ρ(0, 0) =
e−β H(0;λA)

Z(β, λA; DA)
χDA(0), (26)

where the characteristic function is defined as

χD(0) =

{
1, 0 ∈ D,

0, otherwise,
(27)

for any subset D in the phase space. The partition function is then defined as Z(β, λ; D) =∫
D d0e−β H(0;λ).

As initial condition for the backward process we consider

ρ̃(0, τ ) =
e−β H(0;λB)

Z(β, λB; DB)
χDB(0). (28)

The prescriptions for DA and DB are as follows. For case (a), the subsets DA and DB reproduce
the imposed initial constraints for the forward and backward processes, respectively. For
case (b), the set of filtered forward trajectories equals DA at the initial time t = 0 and DB at
the final time τ . For simplicity, we will assume that DB is invariant under inversion of momenta
p → −p.

The relative entropy (10) now reads

kT D(ρ‖ρ̃) = 〈H(0; λB)〉τ − 〈H(0; λA)〉0 − kT ln
Z(β, λA; DA)

Z(β, λB; DB)

= 〈W 〉 − kT ln
Z(β, λA; DA)

Z(β, λB; DB)
. (29)

There are two possible interpretations of this result. If the restriction of microstates to DA

and DB is due to a filter, as in scenario (b), the initial and final free energies must be calculated
over the whole phase space. In this case, we have

kT D(ρ‖ρ̃) = 〈W 〉 −1F − kT ln

[
Z(β, λA; DA)Z(β, λB)

Z(β, λA)Z(β, λB; DB)

]
. (30)

The ratios between the restricted and the non-restricted partition functions are precisely the
probability that an arbitrary trajectory passes the filter in the forward (pDA) and backward
processes ( p̃DB), respectively. Therefore, we obtain the following exact equality:

kT D(ρ‖ρ̃) + kT ln
pDA

p̃DB

= 〈W 〉 −1F . (31)

In particular, the non-negativeness of the relative entropy yields the following inequality:

〈W 〉 −1F > kT ln
pDA

p̃DB

, (32)

which was derived in [10] using the Liouville theorem and applied to a Brownian version of the
Szilard engine and the restore-to-zero process introduced by Landauer.

On the other hand, if the restriction is due to constraints in the system at t = 0 and τ , the
logarithm of the restricted partition functions can be considered as the actual initial and final
free energies. Hence, we recover the same result as in the canonical case:

kT D(ρ‖ρ̃) = 〈W 〉 −1F = 〈W 〉diss. (33)
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It is worthwhile to illustrate the last case on a concrete example, especially since the
Jarzynksi and Crooks equalities are failing for this kind of scenario [31]. We consider the
case of free expansion of a gas from a volume V/2 to a final volume V . The Hamiltonian
in this case is time-independent, but we can still apply our theory to this process consisting of
a free relaxation from a restricted initial condition. In the forward process, the gas is initially in
canonical equilibrium, but confined to one-half of the container, with vacuum in the other half.
It is subsequently allowed to expand and fill the entire container. Since the Hamiltonian is time
independent, the backward process starts with the gas at equilibrium filling the whole volume V
of the container, and obviously remaining so for all times. We thus have

ρ(0, 0) =
e−β H

Z(β; V/2)
χV/2(0),

ρ̃(0̃, τ ) =
e−β H

Z(β; V )
χV (0),

where the characteristic function χV (0) is 1 for microstates with all the particles in the
volume V and 0 otherwise. Now the relative entropy is

kT D(ρ‖ρ̃) = 〈H〉τ − 〈H〉0 − kT ln
Z(β; V/2)

Z(β; V )
= −1F, (34)

since the energy is conserved along the evolution (H has no explicit time-dependence). There
is no work performed in this experiment, 〈W 〉 = 0, and thus −1F is the dissipative work (the
work that we waste compared to a reversible expansion). Therefore, equations (1) and (5) remain
valid, even though the Jarzynski and Crooks relations no longer hold.

4. Quantum version

Just as the Jarzynski equality has been shown to remain valid for quantum processes [32]–[42],
we now show that our approach can easily be extended to the quantum. Time evolution in
quantum mechanics is ruled by unitary transformations. In particular, the density operator obeys
the following quantum version of the Liouville equation:

∂

∂t
ρ = Lρ = −

i

h̄
[H, ρ]. (35)

Under this unitary evolution, the Von Neumann entropy SN(ρ) = −kTr(ρ ln ρ) is preserved.
For the time-reversed process, the time-reversed density operator ρ̃ = 2ρ2−1 satisfies the same
quantum Liouville equation if the forward time t is used (the actual time is τ − t in the same
sense as in the classical case). Here, 2 is the anti-linear time-reversal operator and a fundamental
symmetry of the Hamiltonian 2H(t) = H(t)2 is assumed [45]. Noting that 2p2−1

= −p,
the commutation of H and 2 is, in the present context, equivalent to the assumption that the
classical Hamiltonian is symmetric with respect to the inversion of momenta. Then, we can
prove that Tr(ρ ln ρ̃) is also time invariant. In general, both von Neumann entropy and the
quantum relative entropy are invariant under any unitary transformation [28]. Hence, each term
in the quantum version of the relative entropy [26]

DQ(ρ(t)‖ρ̃(t)) = Tr(ρ(t) ln ρ(t)) − Tr(ρ(t) ln ρ̃(t)) (36)
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can again be shifted to the initial and final time, respectively:

DQ(ρ‖ρ̃) = Tr[ρ(0) ln ρ(0)] − Tr[ρ(τ) ln ρ̃(τ )], (37)

which is analogous to the classical result (10).
By using the appropriate choices of initial and final equilibrium density matrices, one can

easily derive the quantum versions of all the aforementioned classical results. As an illustration,
we present the quantum version of equation (1). Substituting canonical equilibrium density
operators

ρ(0) =
e−β H(λA)

Z(T, λA)
, ρ̃(τ ) =

e−β H(λB)

Z(T, λB)
, (38)

where the partition function is Z(T, λ) = Tr e−β H(λ) into equation (37), we again obtain

kT DQ(ρ‖ρ̃) = 〈W 〉 −1F = 〈W 〉diss . (39)

5. Measuring the relative entropy

While our general formula for entropy production is exact and may be useful as the starting
point for other theoretical investigations, the experimental or even numerical measurement of
the phase space density may practically not be feasible. As shown in [10], one can still have
good estimate of the relative entropy through the measurement of a limited number of physical
quantities. With this partial information, it is clear that the distinction between the forward
and backward processes becomes harder. Mathematically, this is tantamount to saying that the
relative entropy decreases when only partial information of the system is used:

1S = k D(ρ‖ρ̃)> k D(p‖ p̃), (40)

where p and p̃ are the probability distributions of the quantities used to describe the system
in the forward and backward processes, respectively. We have checked the accuracy of this
inequality in different situations [10, 24, 43, 44]. It is remarkable that, in the canonical scenario
with T = T ′, the variables coupled with λ(t) are enough to saturate the inequality [24].

The quantum case is more involved. One can lose information about the state of the system
in different ways: by performing specific measurements or by tracing out the degrees of freedom
of a subsystem, such as a thermal bath. In any of these two cases, we can derive an inequality
similar to (40).

Consider first a measurement of the observable �̂ =
∑

i ωiPi , where the projection
operator satisfies the closure relation:

∑
i Pi = I . The probability to obtain ωi is given by

pi = Tr(ρPi) and p̃i = Tr(ρ̃Pi) for the forward and backward processes, respectively. Then,
from the joint convexity of the relative entropy [28], we have

1S = k DQ(ρ‖ρ̃)> k D(p‖ p̃), (41)

where the discrete version of classical relative entropy is defined as

D(p‖ p̃) =

∑
i

pi ln
pi

p̃i
. (42)

It should be stressed that the corresponding von Neumann entropy shows the opposite
inequality, namely,

S(p)> SN(ρ) . (43)
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Since some information is lost, the Shannon information entropy increases. However, this
result should not be interpreted as the increase of thermodynamic entropy due to the quantum
measurement since the quantum states after measurement are not in thermal equilibrium and
the Shannon entropy does not correspond to thermodynamic entropy. The inequality merely
indicates that an estimate of von Neumann entropy using the probability distribution of
measured quantities provides an upper bound.

Next we consider compound systems. For simplicity, we consider a bipartite system
consisting of two subsystems a and b. The total Hilbert space is the product space Ha+b =

Ha ⊗Hb. If we are interested in the state of the subsystem a, the other subsystem can be traced
out to obtain a reduced density operator ρa = Trb ρa+b. The monotonicity of the relative entropy
states [26]:

1S = k DQ(ρa+b‖ρ̃a+b)> k DQ(ρa‖ρ̃a). (44)

Since we lose some information about the system, again we cannot find the exact amount of the
dissipation. However, the relative entropy of reduced densities provides its lower bound.

While the quantum version of the relative entropy shows the same properties as the classical
version, it is, again, worth mentioning that the von Neumann entropy satisfies an unusual
inequality:

|SN(ρa) − SN(ρb)|6 SN(ρa+b)6 SN(ρa) + SN(ρb). (45)

This property of sub-additivity is quite remarkable since, unlike the classical Shannon entropy,
the entropy of a subsystem can be larger than that of the whole system. This observation plays
an important role in quantum information theory. Furthermore, the role of such specific quantum
features on the foundations of statistical mechanics is the object of an ongoing debate [46]–[49].

6. Conclusions

We have shown that the relative entropy or Kullback–Leibler distance between the forward
and backward state is equal to the entropy production along the forward processes in different
scenarios, both classical and quantum. Stein’s lemma [12] gives a precise meaning to the
relative entropy D(ρA||ρB) between two distributions ρA and ρB: if n data from ρB are given,
the probability of guessing incorrectly that the data come from ρA is bounded by 2−nD(ρA||ρB),
for n large. Therefore, the relative entropy is a quantitative measure of the distinguishability
between the two distributions. In the case of the forward ρ(t) and backward ρ̃(t) states of a
system, the relative entropy D(ρ(t)||ρ̃(t)) measures the distinguishability of the direction of
time. Therefore, our main result 1S = k D(ρ(t)||ρ̃(t)), is a quantitative relationship between
entropy production and the arrow of time.

We have proven this identity in a number of scenarios, by choosing the appropriate
initial conditions for the forward and the backward process. The identity is valid whenever
ρ(0) and ρ̃(τ ) are given by equilibrium states or factorized equilibrium states (such as in the
multicanonical case).

From a fundamental point of view, one can of course argue, as we already mentioned in the
introduction that we have merely shifted the issues of relaxation and entropy production to the
purported properties of the bath. While this is, strictly speaking, indeed the case, the resulting
expression of the entropy production in terms of relative entropy, equation (5), incorporates
two fundamental properties, namely time-translational invariance (Liouville equation) and time-
reversibility of the laws of physics. Hence, our explicit expression for the entropy production

New Journal of Physics 11 (2009) 073008 (http://www.njp.org/)

http://www.njp.org/


13

quantified as the statistical time asymmetry, is very much in the spirit of Onsager’s work on the
symmetry of the Onsager coefficients, resulting from the same ingredients, Liouville’s theorem
and micro-reversibility.

Finally, in the quantum case, while the extension of our results to quantum processes
looks straightforward, at least mathematically, there are intriguing fundamental questions. For
example, how do decoherence, quantum measurement and quantum entanglement contribute to
the fluctuation theorems and ultimately to the second law? On the other hand, the von Neumann
entropy and the quantum relative entropy can detect such processes through the change in the
density operators. In fact, these entropies are used to quantify the degree of entanglement
in quantum information theory [27, 28]. Therefore, our novel approach for irreversibility
in quantum processes allows one to investigate quantum non-equilibrium thermodynamics
involving entanglement and decoherence from a novel perspective.
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