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Abstract
When a Brownian object is in a non-equilibrium steady state, the actual force exerted on it is
different from the one in thermal equilibrium. In our previous paper (Fruleux et al 2012 Phys.
Rev. Lett. 108 160601), we discovered a general principle that relates the missing force to
dissipation rates through the concept of momentum deficiency due to dissipation (MDD). In
this paper, we examine the principle using various models based on hard disc gases and
Brownian pistons. Explicit expressions of the forces are obtained analytically and the results
are compared with molecular dynamics simulations. The good agreement demonstrates the
validity of MDD.

PACS numbers: 05.40.−a, 05.70.Ln, 05.20.Dd

(Some figures may appear in colour only in the online journal)

1. Introduction

Since its inception, investigating the effect of the
environments on a closed system has been a key subject
of thermodynamics. In particular, when the system size is
reduced to a mesoscopic scale, fluctuations in the system
caused by those of the environments play a dominant role
in many physical phenomena, such as Brownian motion.
The state of Brownian objects is typically investigated
with the Langevin theory in which the environments exert
forces on the Brownian objects through deterministic
linear friction and fluctuating Langevin forces [1]. This
approach has been proven to be very effective for many
applications. Furthermore, the recent development of
stochastic energetics [2] allows one to investigate the
exchange of energy between Brownian objects and the
environments within the Langevin theory.

When the system is in contact with more than one
environment that are not in equilibrium with each other,
we expect that the energy and momentum flows between
the system and the environments change in such a way that the
detailed balance is broken. Strictly speaking, this loss of the
detailed balance brings the environments out of equilibrium
at least in the vicinity of the system–environment interfaces.

This aspect is not reflected in the Langevin description.
Consider, for example, the cases when a Brownian object
is simultaneously in contact with two different heat baths
at different temperatures. What force will be exerted on
the Brownian object by the baths? A natural extension
to the standard Langevin theory is to use the frictions
and the stochastic forces from each bath assuming that
the fluctuation–dissipation relation of the second kind (i.e.
the Einstein relation) holds independently of each bath, a
condition that is sometimes called the local detailed balance.
While such a simple linear model works well in many cases,
there are phenomena that refuse to be understood by using the
linear Langevin approach.

The most striking example is the adiabatic piston placed
between two gases with different temperatures [3, 4]. The
piston has no internal degree of freedom so that no heat
flows between the baths through it. An interesting question is
whether the piston moves when the two baths have the same
pressure. Naively, one may think that the piston does not move
because the pressure on the both the sides of the piston is
the same. It turns out that the laws of thermodynamics alone
cannot tell whether the piston moves or not [5]. Feynman
et al [6] have pointed out that fluctuations of the piston’s
velocity should be taken into account. However, the Langevin
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approach with linear frictions falsely predicts zero mean
velocity.

A similar difficulty also appears in some models of
Brownian motors working between two baths [7]. In these
models, the body of Brownian objects, e.g. a triangular
body, is not symmetric with respect to space inversion.
This kind of asymmetry is not fully realized in the linear
Langevin equation since the linear friction constant or tensor
is non-polar. In the case of the adiabatic piston, the Brownian
object itself is symmetric but the environments are not.
In either case, the linear Langevin theory cannot take into
account asymmetric interactions between Brownian objects
and the environments.

A common solution to these problems has been to
resort to full and general microscopic descriptions, such as
molecular dynamics (MD) simulation or master-Boltzmann
equations under pertinent perturbative approximations. These
methods are effective in predicting the outcome. For the
adiabatic piston, MD simulation [4] and the perturbative
master-Boltzmann equation [3, 4] give quite consistent results
showing that the piston moves towards the hotter reservoir.
A more recent investigation based on the nonlinear Langevin
equation confirms this [8]. Although we now know that the
piston moves, we still do not fully understand the physics
behind it.

Recently, we investigated the force exerted by gas
particles on a Brownian object in a non-equilibrium steady
state (NESS) and discovered a rather general principle [9].
When there is energy dissipation, the net momentum flux at
the surface of a Brownian object is reduced from the flux
without dissipation, which we shall call momentum deficiency
due to dissipation (MDD). As a consequence, the force on the
Brownian object decreases from the equilibrium force by

FMDD = −c
J (e)

diss

vth
, (1)

where J (e)
diss is the energy dissipation per unit time, and

the thermal velocity of the gas particles of mass m at a
temperature T is defined by vth ≡

√
kBT/m. The Boltzmann

constant is denoted by kB. The positive prefactor c depends on
the details of the system but is usually of the order of 1.

With this new principle, we are able to explain all
of the above-mentioned phenomena without the lengthy
calculation [9]. It is this MDD that is missing in the linear
Langevin theory. The stochastic energetics [2] tells us that
the linear Langevin theory is sufficient for obtaining the
dissipation rate. Therefore, one can evaluate the missing
force (1) within the Langevin description. Furthermore, we
note that this fundamental principle is applicable to systems
beyond the regular Brownian objects, such as inelastic pistons
and granular Brownian ratchets [10, 11].

In this paper, we will demonstrate the validity of the
new principle (1) using hard disc systems, including MD
simulation. In the next section, we heuristically explain
the idea of MDD. Then, we derive explicit expressions
of FMDD for hard disc systems. The results are compared
with MD simulation of shared Brownian pistons. We also
derive the non-equilibrium forces on an inelastic Brownian
piston. Despite the fact that the origin of dissipation is quite
different from the previous model, we arrive at the same
expression, (1), and MD simulation confirms this.

Figure 1. Simple models illustrating the key point of MDD. The
upper panel (a) shows an equilibrium case where a gas is confined
by a piston pressed with a constant force Fext. In this case, the
momentum flow of the outgoing particles,

∑
(−mvout), equals the

momentum flow of the incoming particles,
∑

mvin. The sum of the
two flows is the pressure of the gas, which balances with the
external force. The lower panel (b) illustrates a non-equilibrium
case where the gas loses energy through the piston to external
environments. In this case, the momentum flow of the outgoing
particles is smaller than that of the incoming particles, resulting in a
reduction of the force exerted on the piston by the gas.

2. Momentum deficit due to dissipation:
a heuristic argument

In this section, we briefly summarize the key concept
developed in [9]. First, we consider a simple equilibrium
system illustrated in figure 1(a). The system consists of
a two-dimensional cylinder filled with a gas and a piston
of mass M with surface size L , pressed with a constant
external force Fext. The piston is a Brownian object and its
velocity fluctuates owing to the collision with gas particles.
However, when the piston is in thermal equilibrium, its mean
velocity is zero. Hence, the sum of the pre-collisional and
post-collisional momentum flows,

∑
mvin +

∑
(−mvout), is

balanced by the external force. Here the summation is taken
over all collisions during unit time. The detailed balance tells
us that at equilibrium the two momentum flows must be equal
and therefore, on average, 2

∑
mvin = |Fext| = pL , where p

is the pressure of the gas. Note that unlike a simple kinetic
theory used in elementary textbooks the individual collisions
can transfer energy and momentum between the gas and the
piston at the microscopic time scale, since the piston is a
Brownian object. It is the detailed balance that makes the two
momentum flows identical on average.

Now we turn to a non-equilibrium case shown in
figure 1(b), where energy flows from the gas through the
piston into another environment. We assume that the piston
is in an NESS so that its mean velocity is zero. The magnitude
of the external force is the same as that in the equilibrium case,
i.e. Fext = pL . In non-equilibrium cases, this relation does
not necessarily indicate mechanical equilibrium. Even for a
non-fluctuating macroscopic object, the actual force exerted
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by the gas deviates from pL as observed in a radiometer4.
Our question is: what is the actual force on the piston when
it is a Brownian object? We expect that the post-collisional
speed is smaller than that in the equilibrium case. Hence, the
net momentum flow must be reduced. This is the MDD and
the force induced by MDD, FMDD, is defined by

FMDD =

∑
mvin +

∑
(−mvout) − pL , (2)

which vanishes in the absence of dissipation.
The magnitude of FMDD can be estimated from the energy

balance ∑ m

2
v2

in −

∑ m

2
v2

out = J (e)
diss. (3)

As a rough estimate, we replace fluctuating quantities with
typical values:

∑
vin ∼ ωcol vth and

∑
v2

in ∼ ωcol v
2
th, where

ωcol is the number of collisions per unit time. Similarly, for
the outgoing particles, we introduce a typical velocity v̄out.
Furthermore, the dissipation is assumed to be so weak that
vin − vout ≈ 2vth. Then, the balance of momentum and energy
is expressed in simpler forms

FMDD ≈ −ωcol m(vth + v̄out), (4)

J (e)
diss ≈ ωcol m(vth + v̄out)vth. (5)

Eliminating the unknown quantity v̄out, we obtain equation (1)
except for the prefactor c which is omitted in the above
phenomenological argument since it depends on the system
configuration.

Despite the drastically simple derivation, equation (1)
agrees with the result of lengthy calculations except for the
prefactor. Applying this principle, we are able to explain the
adiabatic piston and other phenomena both conceptually and
quantitatively [9].

3. Momentum deficiency due to dissipation in hard
disc systems

3.1. Basic model

We consider again the NESS case shown in figure 1(b).
In order to find explicit expressions, we assume that the
gas consists of hard discs which elastically collide with the
piston. The temperature of the gas, T , is assumed to be
constant and the velocity of the gas particles satisfies the
Maxwellian velocity distribution5. We assume only binary
hard collisions to take place. The piston surface is smooth
so that the velocity component parallel to the piston remains
the same upon collision. Hereafter, we consider only the
velocity component perpendicular to the piston. Momentum
and energy are conserved at each collision even when the
Brownian object is simultaneously in contact with other
baths or external agents, since the hard disc collision is

4 Maxwell struggled to explain it until near the end of his life. See [12].
5 In general, this assumption does not hold under non-equilibrium
conditions. Following the previous models [4, 7, 10, 11], we assume that the
incoming particles leave a thermostated region and directly hit the Brownian
object. The outgoing particles, lower in kinetic energy on average, travel back
to the thermostated area before colliding with the incoming particles, and
thus the incoming particles follow the Maxwellian distribution. However, this
situation is possible only when the distance between the Brownian object and
the thermostated region is not larger than the mean free path.

instantaneous. For the i th collision, the gas particle and piston
have the pre-collisional velocity vi and Vi , respectively, and
the corresponding post-collisional velocities ui and Ui are
determined by the momentum and energy conservation laws:

mui − mvi = MVi − MUi , (6)

m

2
u2

i −
m

2
v2

i =
M

2
V 2

i −
M

2
U 2

i . (7)

Between successive collisions, the piston interacts with
another environment or an external agent and its momentum
and energy change by 1Pi and 1Ei , respectively. The
change in the piston velocity is determined by another set of
momentum and energy balance equations:

MVi+1 − MUi = 1Pi , (8)

M

2
V 2

i+1 −
M

2
U 2

i = 1Ei . (9)

Summing up equations (6) and (8) over all n collisions during
unit time, we find the net momentum balance:

ωcol(m〈v〉col − m〈u〉col) + Fext = 0, (10)

where Fext ≡
∑

1Pi and we have used the NESS condition
MUn = MV1. The mean value is defined by

∑
vi =

ωcol〈v〉col. Note that 〈· · · 〉col indicates the average over all
collisions during unit time (see the appendix) and it is not
the same as a regular thermal average over the Maxwell
distribution. The force due to MDD is now expressed as

FMDD = Fext − pL = −ωcol m(〈v〉col + 〈u〉col). (11)

Similarly, adding up equation (7) along with equation (9)
leads to the net energy balance

J (e)
diss = ωcol

(m

2
〈u2

〉col −
m

2
〈v2

〉col

)
, (12)

where J (e)
diss ≡

∑
1Ei . We have used the steady-state

condition MU 2
n /2 = MV 2

1 /2.
For incoming particles, we find that 〈v〉col =

√
π/2 vth

and 〈v2
〉col/〈v〉

2
col = 4/π (see the appendix). We do not have

the exact statistics of the outgoing particles. However, when
the dissipation is weak, we can assume that 〈u〉col ≈ −〈v〉col

and 〈v2
〉col/〈v〉

2
col ≈ 〈u2

〉col/〈u〉
2
col. Using this approximation,

equation (12) is reduced to

J (e)
diss =

√
8

π
vthωcol m(〈v〉col + 〈u〉col). (13)

Comparing equations (11) and (13), we obtain formula (1)
with a prefactor c =

√
π/8.

3.2. Shared Brownian pistons

Now, we introduce a more concrete NESS model shown in
figure 2(a), so that we can evaluate the dissipation rate. The
upper cylinder is the same as the basic model (figure 1(b))
and the gas in it has temperature T1. An NESS condition is
generated by linking the piston to another piston in the second
cylinder filled with another gas at a different temperature T2.
These two pistons are rigidly connected and move together.
Unlike the upper one, the lower cylinder is periodic, so that
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Fext

Fext

Figure 2. Models with two different types of dissipation. (a) The
shared Brownian piston: the piston is in contact with the second gas.
When two gases have different temperatures, heat flows from the
upper gas to the lower one through fluctuations of the piston.
(b) The inelastic Brownian piston: the collision between the gas
particles and the piston is inelastic. The energy dissipates into the
internal degrees of freedom in the piston and gas particles.

the particle density does not change as the piston moves.
Accordingly, when the piston moves, the pressure of the upper
gas, p1, changes while the pressure p2 of the lower gas
remains constant.

It is known that when T1 > T2, heat flows from the upper
gas to the lower gas through the fluctuations of the Brownian
object [13]. The heat dissipation through a shared piston is
understood at the level of standard Langevin theory [14].
Using the friction coefficients for the upper and lower pistons,
γ1 =

√
8/πρ1L

√
kBT1 and γ2 = 2

√
8/πρ2L

√
kBT2, we find

that the dissipation rate is

J (e)
diss =

√
π

8

kBT1 − kBT2

M(γ −1
1 + γ −1

2 )
. (14)

Substituting this dissipation rate and the prefactor c =
√

π/8
into equation (1), we obtain an explicit expression of the force
due to MDD:

FMDD = −
2ρ1ρ2 L

ρ1 + 2ρ2

m

M
(kBT1 − kBT2) . (15)

We have checked the above results using hard disc MD
simulation. The detailed simulation method will be written
somewhere else. Initially, the system is in thermal equilibrium
with T1 = T2 = 1.0. The mean position of the piston X0

remains constant since Fext + p1L = 0. Figure 3 shows that
when the temperature of the lower gas is reduced to T2 = 0.5,
the upper gas is compressed although the temperature is fixed
at T1 = 1.0. The displacement of the piston indicates that the
force exerted on the piston by the gas is not the pressure times
the surface area. Similarly, when T2 is raised above T1, the
upper gas expands.

When the system reaches an NESS, the piston is settled at
a new position and a new pressure p′

1 is established. Assuming

950
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Figure 3. MD simulation of MDD using the model illustrated in
figure 2(a). The upper panel shows the position of the piston and the
lower panel the temperature of two gases. Initially, the two gases
have the same temperature T1 = T2 = 1.0. When the temperature of
the lower gas is reduced to T2 = 0.5, the upper gas is compressed
owing to FMDD. The values of the system parameters are L = 300,
M/m = 20, X0 = 1000 and ρ1 = ρ2 = 0.003 33 where the diameter
of the gas particle is a unit of the length. The mean-free path in this
configuration is about 150. The data are averaged over 300
realizations.

that the gas obeys the ideal gas law and the displacement 1X
is much smaller than X0, the missing force is estimated by

FMDD = (p1 − p′

1)L = p1L
1X

X0
. (16)

In figure 4, we plot FMDD obtained in three different
ways: equation (16) with the measured displacement of the
piston, equation (1) using the dissipation rate measured in
the MD simulation and the full theoretical result (15). All
three estimations agree very well, implying the validity of
equation (1).

4. MDD in granular systems: the inelastic piston

In order to demonstrate the generality of equation (1),
we consider a different type of dissipation. In the model
illustrated in figure 2(b), energy dissipates into the internal
degrees of freedom of the piston and gas particles through
inelastic collisions between them. Using a standard collision
rule used for granular systems, post-collisional velocities are
related to the pre-collisional velocities as ui − Ui = −e(vi −

Vi ), where e is a coefficient of restitution (0 < 1 − e � 1). The
momentum is always conserved and thus equation (6) is still
valid. The energy balance for this model is

m

2
v2

i −
m

2
u2

i =
M

2
U 2

i −
M

2
V 2

i +
1 − e2

2

mM

m + M
(Vi − vi )

2.

(17)

Unlike the previous case, there is no dissipation between
collisions; hence Vi+1 = Ui . Summing up equation (17) for all
collisions during unit time, we obtained equation (12) again
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Figure 4. MD simulation of MDD using the model illustrated in
figure 2(a). The black solid circle shows the force measured in the
simulation through equation (16). The red solid square plots the
force estimated from equation (1) using the observed heat flow. The
full theoretical prediction equation (15) is plotted with a solid line.
The upper curves show the case when the temperature of the second
gas (T2 = 1.5) is higher than that of the upper gas, whereas the
lower curves show the opposite case where the lower gas has
T2 = 0.5. See figure 3 for the values of the system parameters.

with a different dissipation rate:

J (e)
diss =

1 − e2

2

mM

m + M
ωcol〈(V − v)2

〉col. (18)

Although the actual expression of J (e)
diss is different, the

momentum and energy conservation laws are universal, and
hence the general expression (1) is valid also for this model.

Now, we evaluate the dissipation rate (18). Assuming that
the piston obeys the Maxwellian distribution with a kinetic
temperature Tkin, the mean value in equation (18) is given by

〈(v − V )2
〉col =

2kBT

m
+

2kBTkin

M
, (19)

as shown in the appendix. The dissipation rate is divided into
two parts: one proportional to the mean kinetic energy of
the gas particles (the first term) and the other proportional
to the mean kinetic energy of the piston (the second term).
We shall call the former as housekeeping dissipation (Jdiss,hk)
and the latter as excess dissipation (Jdiss,ex) as coined in [15].
Using the mean values used in the previous section and ωcol =

ρLvth/
√

2π (see the appendix), we obtain

Jdiss,hk = (1 − e)

√
2

π
vth pL , (20)

Jdiss,ex = (1 − e)
γ

M

kBT

2
, (21)

where we assumed that m/M � 1, (1 − e2) ≈ 2(1 − e) and
Tkin ≈ T × (1 + e)/2 [16]. Through our basic principle (1)
and the prefactor c =

√
π/8, these dissipation rates lead to

FMDD = FMDD,hk + FMDD,ex where

FMDD,hk = −
1

2
(1 − e)pL , (22)

FMDD,ex = −
m

M
(1 − e)pL . (23)

0 20 40 60 80 100
Piston Mass

-0.04

-0.03

-0.02

-0.01

0

F M
D

D

F
MDD

 (theory)

F
MDD

 (sim.)

-c J
diss

 / v
th

 (sim)

0.9 0.92 0.94 0.96 0.98 1
Restitution Coefficient

-0.06

-0.04

-0.02

0

F M
D

D

F
MDD

 (theory)

F
MDD

 (sim.)

-c J
diss

 / v
th

 (sim)

Figure 5. FMDD on the inelastic piston shown in figure 2(b) is
plotted as a function of the piston mass (the upper panel) and of the
restitution coefficient (the lower panel). The force was evaluated in
three different ways: the black circle indicates the force measured
from the displacement of the piston in the MD simulation using
equation (16). The red square shows formula (1) using the
dissipation rate observed in the MD simulation. The solid line plots
the theoretical value, the sum of equations (22) and (23). In the
upper panel, e = 0.96 and in the lower panel, M/m = 20 are used.
See figure 3 for other parameter values.

Figure 5 shows the result of MD simulation. We again
plot FMDD evaluated in three different ways: equation (16),
equation (1) using the measured dissipation rate and the
full theoretical value with equations (22) and (23). All three
estimations agree well.

As discussed in [9], these forces explain the driving
of inelastic pistons [10] and granular ratchets [11]. For the
granular pistons, the housekeeping force (22) is dominant
and agrees with the perturbative results [10]. On the other
hand, the driving force of the granular ratchets is the
excess-dissipation force (23) since the net housekeeping force
vanishes in this model.

5. Conclusions

We examined the MDD using various hard disc models. The
explicit expressions of the force due to MDD are obtained
for two different models: the shared Brownian piston and the
inelastic Brownian piston. Despite the different dissipation
processes, the general principle (1) is valid for both the cases.
MD simulations agree well with theoretical predictions for
both the cases.
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Appendix. Collision statistics

Here, we briefly explain the calculation of the average
over collision events. We assume that the incoming
gas particles obey Maxwell’s velocity distribution
fg(v) =

√
m/2πkBT e−mv2/2kBT with temperature T . Under

non-equilibrium conditions, the velocity distribution of
the piston is not necessarily Maxwellian. However, when
the piston is under an NESS not far from equilibrium, the
piston approximately follows Maxwell’s velocity distribution
fp(V ) =

√
M/2πkBTkin e−MV 2/2kBTkin but with a kinetic

temperature Tkin that is different from the temperature of the
gas. Under these assumptions, the velocity distribution of gas
particles colliding with the piston moving at a velocity V is
given by

8(v; V ) =
Lρ(v − V )

ωcol
fg(v) fp(V )2(v − V ), (A.1)

where 2(·) is the Heaviside step function and the
normalization constant ωcol is the total number of collisions
per unit time, defined by

ωcol = Lρ

∫
∞

−∞

dV
∫

∞

V
dv(v − V ) fg(v) fp(V )

= Lρ

√
kBT

2πm

√
1 +

mTkin

MT
≈ Lρ

vth
√

2π
, (A.2)

where m � M is assumed.
Using the probability distribution (A.1), we obtain the

first and second moments:

〈v〉col =

∫
∞

−∞

dV
∫

∞

−∞

dv v 8(v; V )

=

√
πkBT

2m

(
1 +

mTkin

MT

)−
1
2

≈

√
π

2
vth, (A.3)

f l〈v2
〉col =

∫
∞

−∞

dV
∫

∞

−∞

dv v2 8(v; V )

=
kBT

m
·

mTkin + 2MT

mTkin + MT
≈ 2v2

th. (A.4)

Similarly, the second moment of the relative velocity is
computed as

〈(v − V )2
〉col =

∫
∞

−∞

dV
∫

∞

−∞

dv (v − V )2 8(v; V )

=
2kBT

m
+

2kBTkin

M
, (A.5)

which is exact under the present assumption.
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