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Izumida and Okuda, EPL 83 (2008), 60003

What will happen if  is finite?
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Efficiency at maximum power

Efficiency decreases as  increases. 
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Curzon-Ahlborn, Am. J. Phys 43 (1975), 22

Curzon-Ahlborn efficiency

Efficiency at maximum power

Novikov, J. Nucl. Energy II (1958), 125

T HT C
C CA Observed

Steam power plant (USA)                    298      923       67.6%          43.2%       40% 



  

Linear non-equilibrium thermodynamics+strong coupling
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Many case studies:  

How universal is the Curzon-Ahlbone efficiency?

Non-linear correction (with left-right symmetry)+strong coupling
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Brownian heat engine [Schmiedl&Seifert, EPL 81 (2008), 20003]



  

Quasi static limit ∞ :  S e
S rev , S i
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Asymptotic expansion (Weak dissipation approximation)
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General case: 
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Asymptotic expansion
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Maximizing power with respect to H and C
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Efficiency at Maximum Power
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T HT C
C CA Observed

32%        47%

24%        31%

16%        19%

L U

Lower 
bound

Upper 
bound

Steam power plant (USA)                      25         650         67.6%             43.2%          40%            34%     51% 

C



  

I think I have already 
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Quantum Dot Carnot Engine
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Steps to find the efficiency at maximum power

Step 1: Optimize the protocol

Step 2: Maximize power with respect to H andC

Step 3: Evaluate efficiency at maximum power
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C=tunneling rate



  

Optimizing protocol

K measures the degree of 
dissipation.

Carnot limit: K0



  

Exact Entropy flow

Determination of K



  

Solution at Weak Dissipation Limit K≪1
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Further maximization w.r.t. H  and C
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Conclusions

1)The efficiency at maximum power is derived without a specific 
model at the weak dissipation limit, .

2)The efficiency at maximum power is bounded between C/2 and 
C/(2-C)

3)Exact Curzon-Ahlborn efficiency is obtained when left-right 
symmetry holds and it lies between the lower and upper bounds.

4)Only maximization of power with respect to operation times is 
necessary to get the Curzon-Ahlborn efficiency

5)  The method of asymptotic expansion (weak dissipation limit) is 
justified for general Markovian processes. 

6)  The present results are demonstrated using analytically solvable 
model based on a quantum dot Carnot engine.
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Brownian heat engine

Schmiedl & Seifert (2008)
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Controle parameter: spring constant

Thermodynamic state:  density p(x)
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