Efficiency at Maximum Power in Weak Dissipation Regimes

R. Kawai University of Alabama at Birmingham

M. Esposito (Brussels) C. Van den Broeck (Hasselt)

Delmenhorst, Germany (October 10-13, 2010)

Contents

- Introduction: Efficiency at maximum power
- General derivation of the efficiency at maximum power with a weak dissipation approximation
- A case study: Quantum dot heat engine

Esposito, Kawai, Van den Broeck, Lindenberg, PRL **105**, 150603 (2010) Esposito, Kawai, Van den Broeck, Lindenberg, PRE **81**, 041106 (2010)

Finite Time Thermodynamics

What will happen if τ is finite? (beyond $\eta < \eta_{\rm C}$)

Izumida and Okuda, EPL 83 (2008), 60003

Efficiency at maximum power

Efficiency decreases as τ increases. But Power reaches its maximum at a certain τ .

maximum power:
$$P^* = \frac{-W}{\tau} = \frac{Q_{\rm H}(\tau_{\rm H}^*) + Q_{\rm C}(\tau_{\rm C}^*)}{\tau_{\rm H}^* + \tau_{\rm C}^*}$$
efficiency at maximum power:
$$\eta^* = 1 + \frac{Q_{\rm C}(\tau_{\rm C}^*)}{Q_{\rm H}(\tau_{\rm H}^*)}$$

Maximize P with respect to ?

- only τ assuming $\lambda(t/\tau)$
- the form of $\lambda(t)$
- $\lambda(t)$ and other system parameters

Curzon-Ahlborn efficiency

Novikov, J. Nucl. Energy II (1958), 125 Curzon-Ahlborn, Am. J. Phys **43** (1975), 22

TABLE I. Observed performance of real heat engines.

Power source	T _C	$T_{\rm H}$	$\eta_{ m C}$	$\eta_{ m CA}$	$\eta_{ m Observed}$
West Thurrock (U.K.) ² Coal Fired Steam Plant	~25	565	64.1%	40%	36%
CANDU (Canada) ⁴ PHW Nuclear Reactor	~ 25	300	48.0	28%	30%
Larderello (Italy) ⁵ Geothermal Steam Plant	80	250	32.3%	17.5%	16%
Steam power plant (USA)	298	923	67.6%	43.2%	40%

Many case studies:

$$\eta^* \approx \eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} = \frac{\eta_C}{2} + \frac{\eta_C^2}{8} + \frac{\eta_C^3}{16} + \cdots$$

Brownian heat engine [Schmiedl&Seifert, EPL 81 (2008), 20003]

$$\eta^{*} = \frac{2(T_{\rm H} - T_{\rm C})}{3T_{\rm H} + T_{\rm C}} = \frac{\eta_{\rm C}}{2} + \frac{\eta_{\rm C}^{2}}{8} + \frac{\eta_{\rm C}^{3}}{32} + \dots$$

Linear non-equilibrium thermodynamics+strong coupling

$$\eta * = \frac{\eta_{\rm C}}{2}$$

Van den Broeck, PRL 95 (2005), 190602

Non-linear correction (with left-right symmetry)+strong coupling

$$\eta * = \frac{\eta_{\rm C}}{2} + \frac{\eta_{\rm C}^2}{8} + o(\eta_{\rm C}^3)$$

Esposito et al., PRL 102 (2009), 130602

Quasi static limit
$$\tau \to \infty$$
: $\Delta S^{e} \to \Delta S^{rev}$, $\Delta S^{i} \to 0$

Asymptotic expansion (Weak dissipation approximation)

$$\Delta S^{\rm e} = \Delta S^{\rm rev} - \frac{\Sigma^{\rm e}}{\tau} + o\left(\frac{1}{\tau^2}\right)$$
$$\Delta S^{\rm i} = -\frac{\Sigma^{\rm i}}{\tau} + o\left(\frac{1}{\tau^2}\right)$$

General case:

$$\frac{d}{dt}|P(t)\rangle = \hat{W}^{T}(t)|P(t)\rangle$$

$$\sum_{m} W^{T}_{mn}(t) = 0$$

$$\hat{W}^{T}(t)|P^{qs}(t)\rangle = 0,$$

$$W^{T}_{mn}(t)P^{qs}_{n}(t) = W^{T}_{nm}(t)P^{qs}_{m}(t)$$

Scaling time
$$s = \frac{t}{\tau}$$

$$\hat{W}^{T}(t) = \hat{W}^{T}[\lambda(t/\tau)]$$

$$\frac{\mathrm{d}}{\mathrm{d}\,s} |P_{\tau}(s)\rangle = \tau \,\hat{W}^{T}(s) |P_{\tau}(s)\rangle$$

Thermodynamics state

Control parameter: λ

Four corners are fixed such that the cycle is a Carnot cycle at the quasi static limit.

Asymptotic expansion

$$|P_{\tau}(s)\rangle = |P^{qs}(s)\rangle + \frac{1}{\tau} |\delta^{(1)}(s)\rangle + \frac{1}{\tau^{2}} |\delta^{(2)}(s)\rangle + o(\tau^{-3})$$

$$\hat{W}^{T}(s)|\delta^{(1)}(s)\rangle = \frac{d}{ds} |P^{qs}(s)\rangle, \ \hat{W}^{T}(s)|\delta^{(2)}(s)\rangle = \frac{d}{ds} |\delta^{(1)}(s)\rangle, \ \sum_{m} \delta_{m}^{(1)} = \sum_{m} \delta_{m}^{(2)} = 0$$

Entropy flow

$$\begin{split} \Delta S^{\mathrm{e}} &= \int_{0}^{\tau} \mathrm{d}t \sum_{m} \sum_{n} W_{mn}^{T}(t) P_{n}(t) \ln \left[\frac{W_{nm}^{T}(t)}{W_{mn}^{T}(t)} \right] \\ &= \Delta S^{\mathrm{rev}} - \frac{1}{\tau} \int_{0}^{1} \mathrm{d}s \sum_{m} \left[\frac{\mathrm{d}}{\mathrm{d}s} \delta_{m}^{(1)}(s) \right] \ln P_{m}^{\mathrm{qs}}(s) \\ &\Delta S^{\mathrm{rev}} = -k \sum_{m} P_{m}^{\mathrm{qs}}(1) \ln P_{m}^{\mathrm{qs}}(1) + k \sum_{m} P_{m}^{\mathrm{qs}}(0) \ln P_{m}^{\mathrm{qs}}(0) \end{split}$$

Entropy production

$$\Delta S^{i} = \int_{0}^{\tau} dt \sum_{m} \sum_{n} W_{mn}^{T}(t) P_{n}(t) \ln \left[\frac{W_{mn}^{T}(t) P_{n}(t)}{W_{nm}^{T}(t) P_{m}(t)} \right]$$
$$= -\frac{1}{\tau} \int_{0}^{1} ds \sum_{m} \delta_{m}^{(1)}(s) \frac{d}{ds} \ln P_{m}^{qs}(s)$$

Asymptotic expansion (Weak dissipation approximation)

$$\Delta S^{\rm e} = \Delta S^{\rm rev} - \frac{\Sigma^{\rm e}}{\tau} + o\left(\frac{1}{\tau^2}\right)$$

Maximizing power with respect to τ_H and τ_C

$$\tau_H^* = \frac{2T_H \Sigma_H^{\rm e}}{(T_H - T_C) \Delta S^{rev}} \left(1 + \sqrt{\frac{T_C \Sigma_C^{\rm e}}{T_H \Sigma_H^{\rm e}}} \right) \qquad \tau_C^* = \frac{2T_C \Sigma_C^{\rm e}}{(T_H - T_C) \Delta S^{rev}} \left(1 + \sqrt{\frac{T_H \Sigma_H^{\rm e}}{T_C \Sigma_C^{\rm e}}} \right)$$

Efficiency at Maximum Power

$$\eta^* = 1 + \frac{Q_C^*}{Q_H^*} = \frac{\eta_C}{2} + \frac{\eta_C^2}{4\left(1 + \sqrt{\frac{\Sigma_C^e}{\Sigma_H^e}}\right)} + \frac{\eta_C^3}{8\left(1 + \sqrt{\frac{\Sigma_C^e}{\Sigma_H^e}}\right)} + \cdots$$

TABLE I. Observed performance of real heat engines.

Upper

Lower

- T. Schmiedl and U. Seifert, Europhys. Lett. 81, 20003 (2008).
- B. Gaveau, M. Moreau, and L. S. Schulman, Phys. Rev. Lett. 105, 060601 (2010).
- L. Chen and Z. Yan, J. Chem. Phys. 90, 3740 (1989)
- S. Velasco et al., J. Phys. D 34, 1000 (2001).

Quantum Dot Carnot Engine

Steps to find the efficiency at maximum power

Step 1: Optimize the protocol ($\epsilon(t)$ or p(t)) Step 2: Maximize power with respect to $\tau_{\rm H}$ and $\tau_{\rm C}$

Step 3: Evaluate efficiency at maximum power

Master equation
$$\dot{p}(t) = -\omega_1 p(t) + \omega_2 [1 - p(t)] \implies \dot{p}(t) = -C p(t) + \frac{C}{e^{\epsilon(t)/kT} + 1}$$

 $\omega_1 = \frac{C}{e^{-\epsilon(t)/kT} + 1}, \quad \omega_2 = \frac{C}{e^{+\epsilon(t)/kT} + 1}$ C=tunneling rate
Work: $W[p(t)] = \int_0^{\tau} \dot{\epsilon}(t) p(t) dt$
Heat: $Q[p(t)] = \int_0^{\tau} \epsilon(t) \dot{p}(t) dt$

Optimizing protocol

$$\mathcal{Q}[P(\cdot)] = \int_0^\tau \varepsilon(t)\dot{p}(t)dt = \int_0^\tau \ln\left[\frac{1}{Cp(t) + \dot{p}(t)} - 1\right]\dot{p}(t)dt \equiv \int_0^\tau L(p,\dot{p})dt$$

$$\delta \int L dt = 0 \quad \rightarrow \quad L - \dot{p} \frac{\partial L}{\partial \dot{p}} = \frac{\dot{p}^2}{(Cp + \dot{p})[C(1 - p) - \dot{p}]} = K$$

$$p(t) = \frac{1}{\mathrm{e}^{\varepsilon(t)/kT} + 1} \left[1 + \sqrt{K \mathrm{e}^{\varepsilon(t)/kT}} \right]$$

K measures the degree of dissipation.

Carnot limit: $K \rightarrow 0$

Determination of K

$$C_{\tau} = F(p(\tau), K) - F(p(0), K)$$

$$F(p, K) = -\frac{1}{2} \ln p + \frac{1}{\sqrt{K}} \arctan \left[\frac{1-2p}{\sqrt{K+4p(1-p)}} \right] + \frac{1}{2} \ln \left[\frac{2p+K+\sqrt{K^2+4Kp(1-p)}}{2(1-p)+K+\sqrt{K^2+4Kp(1-p)}} \right]$$

Exact Entropy flow

$$\Delta S^{\rm e} = \mathcal{S}(p(\tau), K) - \mathcal{S}(p(0), K)$$

$$S(p,K) = p \ln \left[\frac{2p(1-p) + K - \sqrt{K^2 + 4Kp(1-p)}}{2p^2} \right] - \sqrt{K} \arcsin \left[\frac{1-2p}{\sqrt{K+1}} \right] - \ln \left[\frac{2(1-p) - K - \sqrt{K^2 + 4Kp(1-p)}}{2} \right]$$

Solution at Weak Dissipation Limit $K \ll 1$

For given
$$\tau_C$$
, τ_H , $p_{0,} p_1$

Optimum protocol

$$p_{\rm C}(t) = \frac{1}{2} \left[1 - \sin\left(\frac{t}{\tau_{\rm C}} |\phi_1 - \phi_0| + \phi_0\right) \right] \qquad \phi_i = \arcsin(1 - 2p_i) \quad i = 0, 1$$

$$p_{\rm H}(t) = \frac{1}{2} \left[1 - \sin\left(\frac{t}{\tau_{\rm C}} |\phi_1 - \phi_0| - \phi_0\right) \right]$$

Entropy change $\Delta S_{\rm H} = \Delta S_{\rm rev} - \frac{\left(\phi_1 - \phi_0\right)^2}{C_{\rm H}} \frac{1}{\tau_{\rm H}} \qquad \Delta S_{\rm C} = -\Delta S_{\rm rev} - \frac{\left(\phi_1 - \phi_0\right)^2}{C_{\rm C}} \frac{1}{\tau_{\rm C}}$

Maximum power

$$P = \frac{Q_{\rm H} + Q_{\rm C}}{\tau_{\rm H} + \tau_{\rm C}} = \frac{(T_{\rm H} - T_{\rm C})\Delta S_{\rm rev} - (\phi_{\rm 1} - \phi_{\rm 0})^2 \left[\frac{T_{\rm H}}{C_{\rm H}\tau_{\rm H}} + \frac{T_{\rm C}}{C_{\rm C}\tau_{\rm C}}\right]}{\tau_{\rm H} + \tau_{\rm C}}$$

Further maximization w.r.t. $\tau_{\rm H}$ and $\tau_{\rm C}$

$$\eta^* = 1 + \frac{Q_{\rm C}^*}{Q_{\rm H}^*} = \frac{\eta_{\rm C}}{2} + \frac{\eta_{\rm C}^2}{4\left(1 + \sqrt{\frac{C_{\rm H}}{C_{\rm C}}}\right)} + \frac{\eta_{\rm C}^3}{8\left(1 + \sqrt{\frac{C_{\rm H}}{C_{\rm C}}}\right)} + \cdots$$

Conclusions

- 1) The efficiency at maximum power is derived without a specific model at the weak dissipation limit, .
- 2) The efficiency at maximum power is bounded between $\eta_{C}/2$ and $\eta_{C}/(2-\eta_{C})$
- 3) Exact Curzon-Ahlborn efficiency is obtained when left-right symmetry holds and it lies between the lower and upper bounds.
- 4)Only maximization of power with respect to operation times is necessary to get the Curzon-Ahlborn efficiency
- 5) The method of asymptotic expansion (weak dissipation limit) is justified for general Markovian processes.
- 6) The present results are demonstrated using analytically solvable model based on a quantum dot Carnot engine.

Brownian heat engine

Controle parameter: spring constant

Thermodynamic state: density p(x)

$$\eta^{*} = \frac{2(T_{h} - T_{c})}{3T_{h} + T_{c}} = \frac{\eta_{c}}{2} + \frac{\eta_{c}^{2}}{8} + \frac{\eta_{c}^{3}}{32} + \dots$$

Schmiedl & Seifert (2008)