Finite time thermodynamics of a quantum dot heat engine

R. Kawai University of Alabama at Birmingham

Collaboration with

C. Van den Broeck (Hasselt)

M. Esposito (Brussels)

ESPCI, Paris (July 26, 2010)

Contents

• Introduction

- ◆ Carnot cycle and Carnot efficiency
- Efficiency at maximum power and Curzon-Ahlborn efficiency.
- A case study: Quantum dot heat engine
- General derivation of the efficiency at maximum power with a weak dissipation approximation (model independent).
- Justification of the weak dissipation approximation for general Markovian processes.

Finite Time Thermodynamics

Question: What will happen if τ is finite?

Textbook: The efficiency is lowered due to dissipation (entropy production).

Efficiency at maximum power

Curzon-Ahlborn efficiency

Curzon-Ahlborn, Am. J. Phys **43** (1975), 22 Novikov, J. Nucl. Energy **II** (1958), 125

 $\eta^* \approx \eta_{\text{CA}} = 1 - \sqrt{\frac{1}{T_{\text{F}}}}$ T_C T _H = $\eta_{\rm C}$ 2 $\color{red}{+}$ $\eta_{\rm C}^2$ 8 $\color{red}{+}$ $\eta_{\rm C}^3$ 16 $+\cdots$ Many case studies:

Brownian heat engine [Schmiedl&Seifert, EPL **81** (2008), 20003]

$$
\eta^* = \frac{2(T_H - T_C)}{3T_H + T_C} = \frac{\eta_C}{2} + \frac{\eta_C^2}{8} + \frac{\eta_C^3}{32} + \dots
$$

Linear non-equilibrium thermodynamics

$$
\eta^* = \frac{\eta_{\rm C}}{2}
$$

2 Van den Broeck, PRL **95** (2005), 190602

Non-linear correction (with left-right symmetry)

$$
\eta^* = \frac{\eta_{\rm C}}{2} + \frac{\eta_{\rm C}^2}{8} + o(\eta_{\rm C}^3)
$$

Esposito *et al*., PRL **102** (2009), 130602

Quantum Dot Carnot Engine

Esposito et al., PRE**81** (2010), 041106

Steps to find efficiency at maximum power

Step 1: Find $\varepsilon(t)$ that maximizes heat.

Step 2: Maximize power with respect to τ_H and τ_C

Step 3: Evaluate efficiency with optimum *Q* and

$$
\eta = 1 + \frac{Q_{\rm C}}{Q_{\rm H}}
$$

Master equation
$$
\dot{p}(t) = -\omega_1 p(t) + \omega_2 [1 - p(t)] \implies \dot{p}(t) = -C p(t) + \frac{C}{e^{\epsilon(t)/kT} + 1}
$$

$$
\omega_1 = \frac{C}{e^{-\epsilon(t)/kT} + 1}, \quad \omega_2 = \frac{C}{e^{+\epsilon(t)/kT} + 1}
$$

Work: $W[p(t)] = \int_0^{\tau} \dot{\epsilon}(t) p(t) dt$

Heat:
$$
Q[p(t)] = \int_{0}^{T} \epsilon(t) \dot{p}(t) dt
$$

Step 1: Maximizing heat

$$
Q[p(t)] = \int_{0}^{T} \epsilon(t) \dot{p}(t) dt = \int_{0}^{T} \ln \left[\frac{1}{C p(t) + \dot{p}(t)} - 1 \right] \dot{p}(t) dt = \int_{0}^{T} L(p, \dot{p}) dt
$$

$$
L(p, \dot{p}) = \ln \left[\frac{C}{C p(t) + \dot{p}(t)} - 1 \right] \dot{p}(t)
$$

$$
\delta \int L dt = 0 \implies L - \dot{p} \frac{\partial L}{\partial \dot{p}} = \frac{\dot{p}^2}{(C p + \dot{p})[C(1 - p) - \dot{p}]} = K
$$

 $K=1^s$ integral of the motion

$$
p(t) = \frac{1}{e^{\epsilon(t)/kT} + 1} \left[1 + \sqrt{K e^{\epsilon(t)/kT}} \right]
$$

K measures the degree of dissipation. The larger is *K*, the large is dissipation.

Carnot limit: $K \rightarrow 0$

Solution at Weak Dissipation Limit

 $K \ll 1$

$$
\Delta S_{\text{H}} = \Delta S_{\text{rev}} - \frac{\left[\phi_1 - \phi_0\right]^2}{C_{\text{H}}} \frac{1}{\tau_{\text{H}}} \qquad \Delta S_{\text{c}} = -\Delta S_{\text{rev}} - \frac{\left[\phi_1 - \phi_0\right]^2}{C_{\text{c}}} \frac{1}{\tau_{\text{c}}}
$$

$$
\phi_i = \arcsin\left(1 - 2 p_i\right) \qquad i = 0,1
$$

$$
P = \frac{Q_{\rm H} + Q_{\rm C}}{\tau_{\rm H} + \tau_{\rm C}} = \frac{(T_{\rm H} - T_{\rm C})\Delta S_{\rm rev} - (\phi_{\rm 1} - \phi_{\rm 0})^2 \left[\frac{T_{\rm H}}{C_{\rm H} \tau_{\rm H}} + \frac{T_{\rm C}}{C_{\rm C} \tau_{\rm C}} \right]}{\tau_{\rm H} + \tau_{\rm C}}
$$

$$
\eta^* = 1 + \frac{Q_{\text{C}}^*}{Q_{\text{H}}} = \frac{\eta_{\text{C}}}{2} + \frac{\eta_{\text{C}}^2}{4\left|1 + \sqrt{\frac{C_{\text{H}}}{C_{\text{C}}}}\right|} + \frac{\eta_{\text{C}}^3}{8\left|1 + \sqrt{\frac{C_{\text{H}}}{C_{\text{C}}}}\right|} + \cdots
$$

If
$$
C_H = C_C \rightarrow \eta^* = \frac{\eta_C}{2} + \frac{\eta_C^2}{8} + \frac{\eta_C^3}{16} + \cdots = \eta_{CA}
$$

Generalization

Quasi static limit
$$
\tau \to \infty
$$
: $\Delta S^e \to \Delta S^{rev}$, $\Delta S^i \to 0$

Asymptotic expansion (Weak dissipation approximation) $\Delta S^{\text{e}} = \Delta S^{\text{rev}} - \frac{\Sigma^{\text{e}}}{\Sigma^{\text{e}}}$ $\frac{2}{\tau} + o \Big| \frac{1}{\tau}$ 1 $\left\vert \mathbf{\tau }^{2}\right\vert$ ΔS^i = $\overline{\Sigma}^{\rm i}$ $\frac{2}{\tau} + o \Big| \frac{1}{\tau}$ 1 $\left\vert \tau^{2}\right\vert$

$$
Q_{\rm H} = T_{\rm H} \Delta S_{\rm H}^{\rm e} \approx T_{\rm H} \Delta S^{\rm rev} - \frac{T_{\rm H} \Sigma_{\rm H}^{\rm e}}{\tau_{\rm H}}
$$

$$
Q_{\rm C} = T_{\rm C} \Delta S_{\rm C}^{\rm e} \approx -T_{\rm C} \Delta S^{\rm rev} - \frac{T_{\rm C} \Sigma_{\rm C}^{\rm e}}{\tau_{\rm C}}
$$

Maximizing power with respect to τ_H and τ_C

$$
\tau_{\rm H}^* = \frac{2 T_{\rm H} \Sigma_{\rm H}^{\rm e}}{(T_{\rm H} - T_{\rm C}) \Delta S^{\rm rev}} \left(1 + \sqrt{\frac{T_{\rm C} \Sigma_{\rm C}^{\rm e}}{T_{\rm H} \Sigma_{\rm H}^{\rm e}}} \right)
$$

$$
\tau_{\rm C}^* = \frac{2 T_{\rm C} \Sigma_{\rm C}^{\rm e}}{(T_{\rm H} - T_{\rm C}) \Delta S^{\rm rev}} \left(1 + \sqrt{\frac{T_{\rm H} \Sigma_{\rm H}^{\rm e}}{T_{\rm C} \Sigma_{\rm C}^{\rm e}}} \right)
$$

Efficiency at Maximum Power

$$
\eta^* = 1 + \frac{Q_{\rm c}^*}{Q_{\rm H}^*} = \frac{\eta_{\rm c}}{2} + \frac{\eta_{\rm c}^2}{4\left|1 + \sqrt{\frac{\Sigma_{\rm c}^{\rm e}}{\Sigma_{\rm H}^{\rm e}}}\right|} + \frac{\eta_{\rm c}^3}{8\left|1 + \sqrt{\frac{\Sigma_{\rm c}^{\rm e}}{\Sigma_{\rm H}^{\rm e}}}\right|} + \cdots
$$

$$
\frac{\Sigma_{c}^{e}}{\Sigma_{H}^{e}} = \infty \to \eta^{*} = \frac{\eta_{C}}{2}
$$

\n
$$
\frac{\Sigma_{C}^{e}}{\Sigma_{H}^{e}} = 0 \to \eta^{*} = \frac{\eta_{C}}{2} + \frac{\eta_{C}^{2}}{4} + \frac{\eta_{C}^{3}}{8} + \cdots = \frac{\eta_{C}}{2 - \eta_{C}}
$$

\n
$$
\frac{\Sigma_{C}^{e}}{\Sigma_{H}^{e}} = 1 \to \eta^{*} = \frac{\eta_{C}}{2} + \frac{\eta_{C}^{2}}{8} + \frac{\eta_{C}^{3}}{16} + \cdots = \eta_{CA}
$$

\n
$$
\frac{\eta_{C}}{2} \leq \eta^{*} \leq \frac{\eta_{C}}{2 - \eta_{C}}
$$

\n
$$
\eta_{CA}
$$

\n
$$
\eta_{CA}
$$

\n
$$
\text{Exactly in the middle of two bounds}
$$

\n
$$
\text{Schmiedl & \text{Seifert (2008)}}
$$

Justification of asymptotic expansion

An isothermal process: a master equation

$$
\dot{P}_m(t) = \sum_n W_{mn}^T(t) P_n(t)
$$

$$
W_{mn}^T(t) = W_{mn}^T[\lambda(t/\tau)]
$$

$$
\sum_m W_{mn}^T(t) = 0
$$

Scaling time

$$
\frac{\mathrm{d}}{\mathrm{d}\,s} |P_\tau(s)| = \tau \,\hat{W}^T(s) |P_\tau(s)\rangle \quad s = \frac{t}{\tau}
$$

\vdash 으 erm
0 P_1 oて \blacktriangleright $\mathbf \subset$ ϖ mic ທ state: P adiabatic Isothermal (*TC,* ત્ને *H*) Isothermal (*TH,*À ^H) P_2 adiabatic Control parameter: λ $\frac{\lambda_2 \lambda_1}{\lambda_2 \lambda_1}$ $\lambda_3 \lambda_4$

Asymptotic expansion

$$
|P_{\tau}(s)| = |P^{\rm st}(s)| + \frac{1}{\tau} |\delta^{(1)}(s)| + \frac{1}{\tau^2} |\delta^{(2)}(s)| + o\left(\frac{1}{\tau^3}\right)
$$

 $\hat{W}^T(s) | P^{\text{st}}(s) \rangle = 0$, Detailed balance $W^T_{mn}(s) P^{\text{st}}_n(s) = W^T_{nm}(s) P^{\text{st}}_m(s)$ $\hat{W}^T(s) | \delta^{(1)}(s) \rangle =$ d d *s* $|P^{\text{st}}(s)|$, $\hat{W}^T(s)|\delta^{(2)}(s)|=$ d d *s* $\vert \delta^{(1)}(s) \vert \quad \quad \sum$ *m* $\delta_m^{(1)} = \sum$ *m* $\delta_m^{(2)} = 0$ Entropy flow

$$
\Delta S^{\text{e}} = \int_{0}^{\tau} dt \sum_{m} \sum_{n} W_{mn}(t) P_{n}(t) \ln \left[\frac{W_{nm}(t)}{W_{mn}(t)} \right]
$$

= $\Delta S^{\text{rev}} - \frac{1}{\tau} \int_{0}^{1} ds \sum_{m} \left[\frac{d}{ds} \delta_{m}^{(1)}(s) \right] \ln P_{m}^{\text{st}}(s)$

$$
\Delta S^{\text{rev}} = -k \sum_{m} P_{m}^{\text{st}}(\tau) \ln P_{m}^{\text{st}}(\tau) + k \sum_{m} P_{m}^{\text{st}}(0) \ln P_{m}^{\text{st}}(0)
$$

Entropy production

$$
\Delta S^{\mathbf{i}} = \int_{0}^{\tau} dt \sum_{m} \sum_{n} W_{mn}(t) P_{n}(t) \ln \left[\frac{W_{mn}(t) P_{n}(t)}{W_{nm}(t) P_{m}(t)} \right]
$$

=
$$
-\frac{1}{\tau} \int_{0}^{1} ds \sum_{m} \delta_{m}^{(1)}(s) \left[\frac{d}{ds} \ln P_{m}^{\text{st}}(s) \right]
$$

Conclusions

- 1)The efficiency at maximum power is derived without a specific model at the weak dissipation limit, .
- 2) The minimum efficiency at maximum power is $\eta_c/2$. (If only dissipation due to finite time is taken into account.)
- 3) The maximum efficiency at maximum power is $\eta_c/(2-\eta_c)$
- 4)Exact Curzon-Ahlborn efficiency is obtained when left-right symmetry holds and it lies right in the middle between the lower and upper bounds.
- 5)Only maximization of power with respect to operation times is necessary to get the Curzon-Ahlborn efficiency
- 6) The method of asymptotic expansion (weak dissipation limit) is justified for general Markovian processes.
- 7) The general results are demonstrated using analytically solvable model based on a quantum dot Carnot engine.

Determination of *K*

$$
C_{\alpha} \tau_{\alpha} = F(p(\tau_{\alpha}), K) - F(p(0), K)
$$

$$
F(p, K) = \frac{-1}{2} \ln p + \frac{1}{\sqrt{K}} \arctan \left[\frac{1 - 2p}{\sqrt{K + 4p(1 - p)}} \right] + \frac{1}{2} \ln \left[\frac{2p + K + \sqrt{K^2 + 4p(1 - p)}}{2(1 - p) + K + \sqrt{K^2 + 4Kp(1 - p)}} \right]
$$

Exact Entropy flow

$$
Q = T \Delta S^{e} = \mathcal{S}(p(\tau), K) - \mathcal{S}(p(0), K)
$$

$$
\mathcal{S}(p, K) = p \ln \left[\frac{2(1-p)p + K - \sqrt{K^{2} + 4Kp(1-p)}}{2p^{2}} \right] - \sqrt{K} \arcsin \left[\frac{1-2p}{\sqrt{K+1}} \right] - \ln \left[\frac{2(1-p) - K - \sqrt{K^{2} + 4Kp(1-p)}}{2} \right]
$$

Protcols

$$
p_{\rm C}(t) = \frac{1}{2} \left[1 - \sin \left(\frac{t}{\tau_{\rm C}} \left| \phi_1 - \phi_0 \right| + \phi_0 \right) \right]
$$

$$
p_{\rm H}(t) = \frac{1}{2} \left[1 + \sin \left(\frac{t}{\tau_{\rm H}} \left| \phi_1 - \phi_0 \right| - \phi_1 \right) \right]
$$

Brownian heat engine

Controle parameter: spring constant

Thermodynamic state: density *p*(*x*)

$$
\eta^* = \frac{2(T_h - T_c)}{3T_h + T_c} = \frac{\eta_c}{2} + \frac{\eta_c^2}{8} + \frac{\eta_c^3}{32} + \dots
$$

Schmiedl & Seifert (2008)