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Question:  What will happen if  is finite?

Textbook: The efficiency is lowered due to dissipation (entropy production).
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Efficiency at maximum power
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But Power reaches its maximum at a certain .
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Curzon-Ahlborn, Am. J. Phys 43 (1975), 22

Curzon-Ahlborn efficiency

CA=1− T C

T H

Efficiency at maximum power

Novikov, J. Nucl. Energy II (1958), 125

T HT C
C CA Observed

Steam power plant (USA)                    298      923       67.6%          43.2%       40% 



  

Linear non-equilibrium thermodynamics
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Many case studies:  

How universal is the Curzon-Ahlbone efficiency?
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Brownian heat engine [Schmiedl&Seifert, EPL 81 (2008), 20003]



  

Quantum Dot Carnot Engine
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Esposito et al.,  PRE81 (2010), 041106

Control parameter (protocol)  t 



  

Steps to find efficiency at maximum power

P=
QHQC

HC

Step 1: Find (t) that maximizes heat.

Step 2: Maximize power with respect to H andC

=1
QC
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Step 3: Evaluate efficiency with optimum Q and 

ṗ  t =−1 p t 2 [1− p t ]

1=
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e−t / kT1
, 2=
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e t /kT1

Master equation ṗ  t =−C p t 
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et /kT1

Work: W [ p t ]=∫
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̇ t  p t dt

Heat:    Q [ p t ]=∫
0



t  ṗ t dt



  

Q [ pt ]=∫
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t  ṗ t dt=∫
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ln [ 1
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L p , ṗdt

Step 1: Maximizing heat

∫ Ldt=0   ⇒   L− ṗ
∂ L
∂ ṗ
=

ṗ2

C p ṗ[C 1− p− ṗ]
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[1K et /kT ]

L  p , ṗ=ln [ C
C p t  ṗ  t 

−1 ] ṗ t 

K=1st  integral of the motion

K measures the degree of dissipation.
The larger is K, the large is dissipation.

Carnot limit: K0



  

Solution at Weak Dissipation Limit
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Quasi static limit ∞ :  S e
S rev , S i

0

Asymptotic expansion (Weak dissipation approximation)
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  Entropy flow:  S e =
Q
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Internal entropy production

Change in system entropy

Generalization



  

Maximizing power with respect to H and C
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Efficiency at Maximum Power
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T HT C
C CA Observed

32%        47%

24%        31%

16%        19%

L U

Lower 
bound

Upper 
bound

Steam power plant (USA)                    298      923       67.6%          43.2%       40%            34%     51% 



  

An isothermal process:  a master equation
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Conclusions

1)The efficiency at maximum power is derived without a specific 
model at the weak dissipation limit, .

2)The minimum efficiency at maximum power is C/2.  (If only 
dissipation due to finite time is taken into account.)

3)The maximum efficiency at maximum power is C/(2-C)

4)Exact Curzon-Ahlborn efficiency is obtained when left-right 
symmetry holds and it lies right in the middle between the lower 
and upper bounds.

5)Only maximization of power with respect to operation times is 
necessary to get the Curzon-Ahlborn efficiency

6)  The method of asymptotic expansion (weak dissipation limit) is 
justified for general Markovian processes. 

7)  The general results are demonstrated using analytically solvable 
model based on a quantum dot Carnot engine.



  

Determination of K
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Exact Entropy flow
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Protcols

pC t =
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pHt =
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Brownian heat engine

Schmiedl & Seifert (2008)
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Controle parameter: spring constant

Thermodynamic state:  density p(x)
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