Information and Physics Landauer Principle and Beyond

Ryoichi Kawai

Department of Physics University of Alabama at Birmingham

Maxwell Demon

Lerner, 1975

Ralf Landauer (1929-1999)

Landauer principle

"Computational steps which inevitably require a minimal *energy dissipation* are those which *discard information*." (Landauer, 1961)

"Any logically irreversible manipulation of *information*, such as the *erasure* of a bit or the merging of two computation paths, must be accompanied by a corresponding *entropy increase* in non-information bearing degrees of freedom of the information processing apparatus or its environment." (Bennett, 1982, Wikipedia)

The *erasure* of one bit of *information* is necessarily accompanied by a *dissipation* of at least $kT \ln 2$ heat.

Key words: information, erasure, dissipation

Confusion

If one were to imagine starting with those degrees of freedom in a thermalised state, there would be a real reduction in thermodynamic entropy if they were then re-set to a known state. This can only be achieved under information-preserving microscopically deterministic dynamics if the uncertainty is somehow dumped somewhere else — i.e. if the entropy of the environment (or the non information-bearing degrees of freedom) is increased by at least an equivalent amount, as required by the Second Law, by gaining an appropriate quantity of heat: specifically *kT ln 2* of heat for *every 1 bit of randomness erased*. (Wikipedia, Information Theory and Physics)

Landauer's principle for information erasure is valid for a symmetric doublewell potential, but not for an asymmetric one. The proof of

 $W_{\text{erase}} \geq k T \ln 2$

using statistical mechanics is valid only for the symmetric case. (Sagawa and Ueda, 2009)

Key word: Dissipation

Which one is correct?

 $W \ge k T \ln 2$

 $Q \ge k T \ln 2$

 $\Delta S \ge k \ln 2$

 $\Delta S = k \Delta H$ (*H* = information entropy)

• Dissipation: Entropy production. $\Delta S_{\text{total}} = \Delta S_{\text{sys}} + \Delta S_{\text{env}}$ Increase of total entropy in the universe.

Information: ?

• Erasure: ?

What is information Erasure?

Bit Eraser

Which one erased the input information?

Information is probabilistic

Information Entropy of one bit $H = -p_0 \ln p_0 - p_1 \ln p_1$

Dissipation: Entropy production. Increase of total entropy in the universe.

 Information: Uncertainty of bits Ensemble of bits

• Erasure: ?

Information Erasure

Dissipation: Entropy production. Increase of total entropy in the universe.

 Information: Uncertainty of bits Ensemble of bits

 Erasure: For all possible input information, the outcome is the same. Any ensemble of bits is mapped to a standard ensemble. (There is a constraint to the mapping procedure.)

Implementation of Information in Physics: A model

A Physical Model: Randomizing

A Physical Model: Resetting to Zero

- Dissipation: Entropy production.
 Increase of total entropy in the universe.
- Information: Uncertainty of bits
 Ensemble of bits
- Erasure: For all possible input information, the outcome is the same. Any ensemble of bits is mapped to a standard ensemble. The erasing procedure must be autonomous. (No feedback control.)

 $\Delta I = -\ln 2$

Erasure of Mutual Information

The bit eraser deleted the correlation between two bits of information.

Input: (0, R) and (1, B)
$$p_{0R} = \frac{1}{2}$$
, $p_{1B} = \frac{1}{2}$, $p_{1R} = p_{0B} = 0$
Output: (0,R), (0,B), (1,R), and (1,B) $p_{0R} = p_{1R} = p_{0B} = p_{1B} = \frac{1}{4}$

Mutual Information between information X and Y:

$$I(X, Y) = H(X) + H(Y) - H(X, Y) = D(X||Y) = \sum_{XY} p_{XY} \ln \frac{p_{XY}}{p_X p_Y}$$

where $p_X = \sum_Y p_{XY}$, $p_Y = \sum_X p_{XY}$
 $I_{in} = \ln 2$, $I_{out} = 0$

When mutual information I(X, Y) is erased, $\Delta S_{\text{total}} \ge k I(X, Y)$ f entropy is generated.

More detailed analysis

$$\Delta S_{\text{total}} = k D(\rho_{\Gamma}(t) || \tilde{\rho}_{\Gamma}(t)) = k \int \rho_{\Gamma}(q, p, t) \ln \frac{\rho_{\Gamma}(q, p, t)}{\tilde{\rho}_{\Gamma}(q, -p, t)}$$
(Kawai et al., 2007)

Information bearing coordinates: X Other coordinates: Z

$$\rho(X,t) = \int dZ \rho_{\Gamma}(q,p,t)$$

Relation with information $p_i = \int dX \,\rho(X, t) \chi_i(X), \qquad \chi_i(X) = \begin{cases} 1 & X \in R_i \\ 0 & \text{otherwise} \end{cases}$

$$\Delta S_{\text{total}} \ge D(\rho \| \tilde{\rho}) \ge D(p \| \tilde{p}), \quad D(p \| \tilde{p}) = \sum_{i} p_{i} \ln \frac{p_{i}}{\tilde{p}_{i}}$$

Landauer principle via free expansion

Thermodynamics textbook says: Entropy increases during free expansion because information is lost.

Landauer principle: When information is lost, entropy increases.

Hamiltonian: $H(X, Y) \rightarrow H_x(X) + H_y(Y)$ Forward: $\rho_{(X,Y)} \neq \rho_x(X) \rho_y(Y)$ $\rho_x(X) = \int dY \rho_{eq}(X, Y), \quad \rho_y(Y) = \int dX \rho_{eq}(X, Y)$

Backward: $\tilde{\rho}(X, Y) = \tilde{\rho}_x(X) \tilde{\rho}_y(Y)$

$$\Delta S_{\text{total}} = D(\rho || \tilde{\rho}) = \int dX \int dY \rho(X, Y) \ln \frac{\rho(X, Y)}{\tilde{\rho}(X, Y)}$$

= $\int dX \int dY \rho(X, Y) \ln \frac{\rho(X, Y)}{\rho_x(X)\rho_y(Y)} + \int dX \int dY \rho(X, Y) \ln \frac{\rho_x(X)\rho_y(Y)}{\tilde{\rho}_x(X)\tilde{\rho}_y(Y)}$
= $I(X, Y) + D(\rho_x || \tilde{\rho}_x) + D(\rho_y || \tilde{\rho}_y) \ge I(X, Y)$

The issue of asymmetric domain size

Sagawa and Ueda (2009)

About $\Delta S = k \Delta H$

"When information entropy changes by ΔH , the system entropy changes by $\Delta S_{sys} = k\Delta H$. Since $\Delta S_{total} = \Delta S_{sys} + \Delta S_{env} > 0$, $\Delta S_{env} > -k\Delta H$."

This information entropy is different from the one used to measure the uncertainty in information.

$$H = -P_0 \ln P_0 - P_1 \ln P_1$$

Input has two possible perfectly certain states. $H_{in} = \ln 2$ Output is unique. $H_{out} = 0$ $\Delta H = -\ln 2 \rightarrow \Delta S = -k \ln 2$

 $\Delta S_{\rm env} \ge k \ln 2$

Entropy is transferred from information world to physical world.

In this sense, the statement in Wikipedia is correct!

This was Landauer's original idea but no physical basis has been offered.

Summary on Information Erasure

- Information is a profile of probability distribution: $\{p_i\}$
- Relation between information and physics: $p_i = \int dX \rho(X) \chi_i(X)$
- Information erasure: $\forall \{p_i\} \rightarrow \{p_i^*\}$

using an autonomous procedure (no feedback). (A single Hamiltonian for all initial conditions.) Remark: $\forall \rho(X, t_0) \rightarrow \rho^*(X, \tau)$ is not necessary

 Amount of required entropy production depends on the initial condition (input information).

The less uncertain is input, the larger is dissipation. If the input has no uncertainty, $\Delta S_{\text{total}} \ge k \ln 2$ If the input is completely uncertain, $\Delta S_{\text{total}} \ge 0$

Erasure of mutual information requires dissipation:

 $\Delta S_{\text{total}} \ge k I$

Simple Logical Gates

Input: Two bits ; Output: One bit \rightarrow Erasure of one bit $\rightarrow \Delta S_{i} \geq k \ln 2$

Dissipation in an dissipative OR gate (information theory)

Common argument in information theory using information flow

Dissipation in an dissipative OR gate (physics)

Assume that the input information has no uncertainty.

